BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 30779472)

  • 1. Structural Distortion of Cycloalkynes Influences Cycloaddition Rates both by Strain and Interaction Energies.
    Hamlin TA; Levandowski BJ; Narsaria AK; Houk KN; Bickelhaupt FM
    Chemistry; 2019 May; 25(25):6342-6348. PubMed ID: 30779472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity and regioselectivity in 1,3-dipolar cycloadditions of azides to strained alkynes and alkenes: a computational study.
    Schoenebeck F; Ess DH; Jones GO; Houk KN
    J Am Chem Soc; 2009 Jun; 131(23):8121-33. PubMed ID: 19459632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical elucidation of the origins of substituent and strain effects on the rates of Diels-Alder reactions of 1,2,4,5-tetrazines.
    Liu F; Liang Y; Houk KN
    J Am Chem Soc; 2014 Aug; 136(32):11483-93. PubMed ID: 25041719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ring strain energy in the cyclooctyl system. The effect of strain energy on [3 + 2] cycloaddition reactions with azides.
    Bach RD
    J Am Chem Soc; 2009 Apr; 131(14):5233-43. PubMed ID: 19301865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the 1,3-Dipolar Cycloadditions of Allenes.
    Yu S; Vermeeren P; van Dommelen K; Bickelhaupt FM; Hamlin TA
    Chemistry; 2020 Sep; 26(50):11529-11539. PubMed ID: 32220086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alkene distortion energies and torsional effects control reactivities, and stereoselectivities of azide cycloadditions to norbornene and substituted norbornenes.
    Lopez SA; Houk KN
    J Org Chem; 2013 Mar; 78(5):1778-83. PubMed ID: 22764840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain-Promoted 1,3-Dipolar Cycloaddition of Cycloalkynes and Organic Azides.
    Dommerholt J; Rutjes FPJT; van Delft FL
    Top Curr Chem (Cham); 2016 Apr; 374(2):16. PubMed ID: 27573141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diazo Compounds as Highly Tunable Reactants in 1,3-Dipolar Cycloaddition Reactions with Cycloalkynes().
    McGrath NA; Raines RT
    Chem Sci; 2012 Jan; 3(11):3237-3240. PubMed ID: 23227302
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual Activation of Aromatic Diels-Alder Reactions.
    Narsaria AK; Hamlin TA; Lammertsma K; Bickelhaupt FM
    Chemistry; 2019 Jul; 25(42):9902-9912. PubMed ID: 31111976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1,3-Dipolar cycloaddition reactivities of perfluorinated aryl azides with enamines and strained dipolarophiles.
    Xie S; Lopez SA; Ramström O; Yan M; Houk KN
    J Am Chem Soc; 2015 Mar; 137(8):2958-66. PubMed ID: 25553488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition states of strain-promoted metal-free click chemistry: 1,3-dipolar cycloadditions of phenyl azide and cyclooctynes.
    Ess DH; Jones GO; Houk KN
    Org Lett; 2008 Apr; 10(8):1633-6. PubMed ID: 18363405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diels-Alder Reactivity of a Chiral Anthracene Template with Symmetrical and Unsymmetrical Dienophiles: A DFT Study.
    Hernández-Mancera JP; Núñez-Zarur F; Vivas-Reyes R
    ChemistryOpen; 2020 Jul; 9(7):748-761. PubMed ID: 32670739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of Orbital Interactions and Activation Strain (Distortion Energies) on Reactivities in the Normal and Inverse Electron-Demand Cycloadditions of Strained and Unstrained Cycloalkenes.
    Levandowski BJ; Hamlin TA; Bickelhaupt FM; Houk KN
    J Org Chem; 2017 Aug; 82(16):8668-8675. PubMed ID: 28712288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diels-Alder Reactivities of Benzene, Pyridine, and Di-, Tri-, and Tetrazines: The Roles of Geometrical Distortions and Orbital Interactions.
    Yang YF; Liang Y; Liu F; Houk KN
    J Am Chem Soc; 2016 Feb; 138(5):1660-7. PubMed ID: 26804318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactivity and regioselectivity in reactions of methyl and ethyl azides with cyclooctynes: activation strain model and energy decomposition analysis.
    de S Vilhena F; de M Carneiro JW
    J Mol Model; 2017 Jan; 23(1):14. PubMed ID: 28032223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital models.
    Ess DH; Houk KN
    J Am Chem Soc; 2008 Aug; 130(31):10187-98. PubMed ID: 18613669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational study of the 1,3-dipolar cycloaddition between methyl 2-trifluorobutynoate and substituted azides in terms of reactivity indices and activation parameters.
    Salah M; Komiha N; Kabbaj OK; Ghailane R; Marakchi K
    J Mol Graph Model; 2017 May; 73():143-151. PubMed ID: 28279822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origins of regioselectivity in 1,3-dipolar cycloadditions of nitrile oxides with alkynylboronates.
    Lin B; Yu P; He CQ; Houk KN
    Bioorg Med Chem; 2016 Oct; 24(20):4787-4790. PubMed ID: 27501912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decreasing Distortion Energies without Strain: Diazo-Selective 1,3-Dipolar Cycloadditions.
    Gold B; Aronoff MR; Raines RT
    J Org Chem; 2016 Jul; 81(14):5998-6006. PubMed ID: 27332711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strain-promoted azide-alkyne cycloadditions of benzocyclononynes.
    Tummatorn J; Batsomboon P; Clark RJ; Alabugin IV; Dudley GB
    J Org Chem; 2012 Mar; 77(5):2093-7. PubMed ID: 22316100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.