These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 30779586)
1. Epitaxial van der Waals Contacts between Transition-Metal Dichalcogenide Monolayer Polymorphs. Lee CS; Oh SJ; Heo H; Seo SY; Kim J; Kim YH; Kim D; Ngome Okello OF; Shin H; Sung JH; Choi SY; Kim JS; Kim JK; Jo MH Nano Lett; 2019 Mar; 19(3):1814-1820. PubMed ID: 30779586 [TBL] [Abstract][Full Text] [Related]
2. Improving Performances of In-Plane Transition-Metal Dichalcogenide Schottky Barrier Field-Effect Transistors. Fan ZQ; Jiang XW; Chen J; Luo JW ACS Appl Mater Interfaces; 2018 Jun; 10(22):19271-19277. PubMed ID: 29737827 [TBL] [Abstract][Full Text] [Related]
3. All-van-der-Waals Barrier-Free Contacts for High-Mobility Transistors. Zhang X; Yu H; Tang W; Wei X; Gao L; Hong M; Liao Q; Kang Z; Zhang Z; Zhang Y Adv Mater; 2022 Aug; 34(34):e2109521. PubMed ID: 35165952 [TBL] [Abstract][Full Text] [Related]
4. Tuning electronic transport in epitaxial graphene-based van der Waals heterostructures. Lin YC; Li J; de la Barrera SC; Eichfeld SM; Nie Y; Addou R; Mende PC; Wallace RM; Cho K; Feenstra RM; Robinson JA Nanoscale; 2016 Apr; 8(16):8947-54. PubMed ID: 27073972 [TBL] [Abstract][Full Text] [Related]
5. Controlled synthesis of van der Waals CoS Wang Y; Liu C; Duan H; Li Z; Wang C; Tan H; Feng S; Liu R; Li P; Yan W Nanotechnology; 2023 Oct; 35(2):. PubMed ID: 37797610 [TBL] [Abstract][Full Text] [Related]
6. Heteroepitaxial van der Waals semiconductor superlattices. Jin G; Lee CS; Okello OFN; Lee SH; Park MY; Cha S; Seo SY; Moon G; Min SY; Yang DH; Han C; Ahn H; Lee J; Choi H; Kim J; Choi SY; Jo MH Nat Nanotechnol; 2021 Oct; 16(10):1092-1098. PubMed ID: 34267369 [TBL] [Abstract][Full Text] [Related]
7. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Wang Y; Kim JC; Wu RJ; Martinez J; Song X; Yang J; Zhao F; Mkhoyan A; Jeong HY; Chhowalla M Nature; 2019 Apr; 568(7750):70-74. PubMed ID: 30918403 [TBL] [Abstract][Full Text] [Related]
8. Molecule-Upgraded van der Waals Contacts for Schottky-Barrier-Free Electronics. Zhang X; Kang Z; Gao L; Liu B; Yu H; Liao Q; Zhang Z; Zhang Y Adv Mater; 2021 Nov; 33(45):e2104935. PubMed ID: 34569109 [TBL] [Abstract][Full Text] [Related]
9. Epitaxial van der Waals contacts of 2D TaSe Qiao P; Xia J; Li X; Li Y; Cao J; Zhang Z; Lu H; Meng Q; Li J; Meng XM Nanoscale; 2023 Nov; 15(42):17036-17044. PubMed ID: 37846513 [TBL] [Abstract][Full Text] [Related]
10. van der Waals Epitaxy of High-Mobility Polymorphic Structure of Mo Lee RS; Kim D; Pawar SA; Kim T; Shin JC; Kang SW ACS Nano; 2019 Jan; 13(1):642-648. PubMed ID: 30609346 [TBL] [Abstract][Full Text] [Related]
11. Indium-contacted van der Waals gap tunneling spectroscopy for van der Waals layered materials. Choi DH; Min KA; Hong S; Kim BK; Bae MH; Kim JJ Sci Rep; 2021 Sep; 11(1):17790. PubMed ID: 34493752 [TBL] [Abstract][Full Text] [Related]
12. Antiferromagnet-Semiconductor Van Der Waals Heterostructures: Interlayer Interplay of Exciton with Magnetic Ordering. Onga M; Sugita Y; Ideue T; Nakagawa Y; Suzuki R; Motome Y; Iwasa Y Nano Lett; 2020 Jun; 20(6):4625-4630. PubMed ID: 32407633 [TBL] [Abstract][Full Text] [Related]
13. Low-resistivity Ohmic contacts of Ti/Al on few-layered 1T'-MoTe Chi PF; Wang JJ; Zhang JW; Chuang YL; Lee ML; Sheu JK Nanoscale Horiz; 2024 Oct; 9(11):2060-2066. PubMed ID: 39283319 [TBL] [Abstract][Full Text] [Related]
14. Impact of Rh, Ru, and Pd Leads and Contact Topologies on Performance of WSe Chung CH; Lin CY; Liu HY; Nian SE; Chen YT; Tsai CE Materials (Basel); 2024 Jun; 17(11):. PubMed ID: 38893929 [TBL] [Abstract][Full Text] [Related]
15. A back-to-back diode model applied to van der Waals Schottky diodes. Cloninger JA; Harris R; Haley KL; Sterbentz RM; Taniguchi T; Watanabe K; Island JO J Phys Condens Matter; 2024 Aug; 36(45):. PubMed ID: 39084637 [TBL] [Abstract][Full Text] [Related]
16. Ultraviolet Wavelength-Dependent Optoelectronic Properties in Two-Dimensional NbSe Son SB; Kim Y; Kim A; Cho B; Hong WK ACS Appl Mater Interfaces; 2017 Nov; 9(47):41537-41545. PubMed ID: 29110451 [TBL] [Abstract][Full Text] [Related]
17. Gate-Tunable Thermal Metal-Insulator Transition in VO Yamamoto M; Nouchi R; Kanki T; Hattori AN; Watanabe K; Taniguchi T; Ueno K; Tanaka H ACS Appl Mater Interfaces; 2019 Jan; 11(3):3224-3230. PubMed ID: 30604604 [TBL] [Abstract][Full Text] [Related]
18. Tunable Contact Types and Interfacial Electronic Properties in TaS Zhu X; Jiang H; Zhang Y; Wang D; Fan L; Chen Y; Qu X; Yang L; Liu Y Molecules; 2023 Jul; 28(14):. PubMed ID: 37513478 [TBL] [Abstract][Full Text] [Related]
19. Lowering the Schottky Barrier Height by Quasi-van der Waals Contacts for High-Performance p-Type MoTe Yang Z; Peng X; Wang J; Lin J; Zhang C; Tang B; Zhang J; Yang W ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38676636 [TBL] [Abstract][Full Text] [Related]
20. Tunable and Robust Near-Room-Temperature Intrinsic Ferromagnetism of a van der Waals Layered Cr-Doped 2H-MoTe Yang L; Wu H; Zhang L; Zhang G; Li H; Jin W; Zhang W; Chang H ACS Appl Mater Interfaces; 2021 Jul; 13(27):31880-31890. PubMed ID: 34182752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]