BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 30779735)

  • 1. Allosteric mechanism of the circadian protein Vivid resolved through Markov state model and machine learning analysis.
    Zhou H; Dong Z; Verkhivker G; Zoltowski BD; Tao P
    PLoS Comput Biol; 2019 Feb; 15(2):e1006801. PubMed ID: 30779735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revealing Hidden Conformational Space of LOV Protein VIVID Through Rigid Residue Scan Simulations.
    Zhou H; Zoltowski BD; Tao P
    Sci Rep; 2017 Apr; 7():46626. PubMed ID: 28425502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glutamine Amide Flip Elicits Long Distance Allosteric Responses in the LOV Protein Vivid.
    Ganguly A; Thiel W; Crane BR
    J Am Chem Soc; 2017 Mar; 139(8):2972-2980. PubMed ID: 28145707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dimeric allostery mechanism of the plant circadian clock photoreceptor ZEITLUPE.
    Trozzi F; Wang F; Verkhivker G; Zoltowski BD; Tao P
    PLoS Comput Biol; 2021 Jul; 17(7):e1009168. PubMed ID: 34310591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allosterically regulated unfolding of the A'α helix exposes the dimerization site of the blue-light-sensing aureochrome-LOV domain.
    Herman E; Kottke T
    Biochemistry; 2015 Feb; 54(7):1484-92. PubMed ID: 25621532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deciphering the Allosteric Process of the
    Tian H; Trozzi F; Zoltowski BD; Tao P
    J Phys Chem B; 2020 Oct; 124(41):8960-8972. PubMed ID: 32970438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-induced differences in conformational dynamics of the circadian clock regulator VIVID.
    Lee CT; Malzahn E; Brunner M; Mayer MP
    J Mol Biol; 2014 Feb; 426(3):601-10. PubMed ID: 24189053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Markov models for the elucidation of allosteric regulation.
    Sengupta U; Strodel B
    Philos Trans R Soc Lond B Biol Sci; 2018 Jun; 373(1749):. PubMed ID: 29735732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational switching in the fungal light sensor Vivid.
    Zoltowski BD; Schwerdtfeger C; Widom J; Loros JJ; Bilwes AM; Dunlap JC; Crane BR
    Science; 2007 May; 316(5827):1054-7. PubMed ID: 17510367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light activation of the LOV protein vivid generates a rapidly exchanging dimer.
    Zoltowski BD; Crane BR
    Biochemistry; 2008 Jul; 47(27):7012-9. PubMed ID: 18553928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncovering allosteric pathways in caspase-1 using Markov transient analysis and multiscale community detection.
    Amor B; Yaliraki SN; Woscholski R; Barahona M
    Mol Biosyst; 2014 Aug; 10(8):2247-58. PubMed ID: 24947802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. β-sheets mediate the conformational change and allosteric signal transmission between the AsLOV2 termini.
    Xiao S; Ibrahim MT; Verkhivker GM; Zoltowski BD; Tao P
    J Comput Chem; 2024 Jun; 45(17):1493-1504. PubMed ID: 38476039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biological Significance of Photoreceptor Photocycle Length: VIVID Photocycle Governs the Dynamic VIVID-White Collar Complex Pool Mediating Photo-adaptation and Response to Changes in Light Intensity.
    Dasgupta A; Chen CH; Lee C; Gladfelter AS; Dunlap JC; Loros JJ
    PLoS Genet; 2015 May; 11(5):e1005215. PubMed ID: 25978382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light induces oxidative damage and protein stability in the fungal photoreceptor Vivid.
    Hernández-Candia CN; Casas-Flores S; Gutiérrez-Medina B
    PLoS One; 2018; 13(7):e0201028. PubMed ID: 30028876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of a light-activated LOV protein dimer that regulates transcription.
    Vaidya AT; Chen CH; Dunlap JC; Loros JJ; Crane BR
    Sci Signal; 2011 Aug; 4(184):ra50. PubMed ID: 21868352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Illuminating the early signaling pathway of a fungal light-oxygen-voltage photoreceptor.
    Peter E; Dick B; Baeurle SA
    Proteins; 2012 Feb; 80(2):471-81. PubMed ID: 22081493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling the Mechanism of a LOV Domain Optogenetic Sensor: A Glutamine Lever Induces Unfolding of the Jα Helix.
    Iuliano JN; Collado JT; Gil AA; Ravindran PT; Lukacs A; Shin S; Woroniecka HA; Adamczyk K; Aramini JM; Edupuganti UR; Hall CR; Greetham GM; Sazanovich IV; Clark IP; Daryaee T; Toettcher JE; French JB; Gardner KH; Simmerling CL; Meech SR; Tonge PJ
    ACS Chem Biol; 2020 Oct; 15(10):2752-2765. PubMed ID: 32880430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD4-binding obstacles in conformational transitions and allosteric communications of HIV gp120.
    Li Y; Guo YC; Zhang XL; Deng L; Sang P; Yang LQ; Liu SQ
    Biochim Biophys Acta Biomembr; 2020 Jun; 1862(6):183217. PubMed ID: 32061646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The PAS/LOV protein VIVID controls temperature compensation of circadian clock phase and development in Neurospora crassa.
    Hunt SM; Elvin M; Crosthwaite SK; Heintzen C
    Genes Dev; 2007 Aug; 21(15):1964-74. PubMed ID: 17671094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dynamic conformational landscape of the protein methyltransferase SETD8.
    Chen S; Wiewiora RP; Meng F; Babault N; Ma A; Yu W; Qian K; Hu H; Zou H; Wang J; Fan S; Blum G; Pittella-Silva F; Beauchamp KA; Tempel W; Jiang H; Chen K; Skene RJ; Zheng YG; Brown PJ; Jin J; Luo C; Chodera JD; Luo M
    Elife; 2019 May; 8():. PubMed ID: 31081496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.