These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30779797)

  • 1. Factors affecting aerial spray drift in the Brazilian Cerrado.
    Baio FHR; Antuniassi UR; Castilho BR; Teodoro PE; Silva EED
    PLoS One; 2019; 14(2):e0212289. PubMed ID: 30779797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spray drift as affected by meteorological conditions.
    Nuyttens D; Sonck B; de Schampheleire M; Steurbaut W; Baetens K; Verboven P; Nicolaï B; Ramon H
    Commun Agric Appl Biol Sci; 2005; 70(4):947-59. PubMed ID: 16628942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spray droplet size, drift potential, and risks to nontarget organisms from aerially applied glyphosate for coca control in Colombia.
    Hewitt AJ; Solomon KR; Marshall EJ
    J Toxicol Environ Health A; 2009; 72(15-16):921-9. PubMed ID: 19672760
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the entrained air and initial droplet velocity on the release height parameter of a Gaussian spray drift model.
    Stainier C; Destain MF; Schiffers B; Lebeau F
    Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):197-200. PubMed ID: 17390793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-Time Monitoring of Spray Drift from Three Different Orchard Sprayers.
    Blanco MN; Fenske RA; Kasner EJ; Yost MG; Seto E; Austin E
    Chemosphere; 2019 May; 222():46-55. PubMed ID: 30690400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spray Drift from a Conventional Axial Fan Airblast Sprayer in a Modern Orchard Work Environment.
    Kasner EJ; Fenske RA; Hoheisel GA; Galvin K; Blanco MN; Seto EYW; Yost MG
    Ann Work Expo Health; 2018 Nov; 62(9):1134-1146. PubMed ID: 30346469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Wind Speed and Direction and Key Meteorological Parameters on Potential Pesticide Drift Mass Loadings from Sequential Aerial Applications.
    Desmarteau DA; Ritter AM; Hendley P; Guevara MW
    Integr Environ Assess Manag; 2020 Mar; 16(2):197-210. PubMed ID: 31589364
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of the spray drift task force database for aerial applications.
    Hewitt AJ; Johnson DR; Fish JD; Hermansky CG; Valcore DL
    Environ Toxicol Chem; 2002 Mar; 21(3):648-58. PubMed ID: 11878479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of realtime spray drift using RTDrift Gaussian advection-diffusion model.
    Lebeau F; Verstraete A; Schiffers B; Destain MF
    Commun Agric Appl Biol Sci; 2009; 74(1):11-24. PubMed ID: 20218507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occurrence of spray drift for different crop types: cereal, cereal stubble and grassland.
    De Schampheleire M; Nuyttens D; Dekeyser D; Verboven P; Spanoghe P
    Commun Agric Appl Biol Sci; 2008; 73(4):743-7. PubMed ID: 19226823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time particle monitoring of pesticide drift from an axial fan airblast orchard sprayer.
    Blanco MN; Fenske RA; Kasner EJ; Yost MG; Seto E; Austin E
    J Expo Sci Environ Epidemiol; 2019 Apr; 29(3):397-405. PubMed ID: 30425317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Winds of change, developing a non-target plant bioassay employing field-based pesticide drift exposure: A case study with atrazine.
    Brain R; Goodwin G; Abi-Akar F; Lee B; Rodgers C; Flatt B; Lynn A; Kruger G; Perkins D
    Sci Total Environ; 2019 Aug; 678():239-252. PubMed ID: 31075591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The agricultural dispersal-valley drift spray drift modeling system compared with pesticide drift data.
    Allwine KJ; Thistle HW; Teske ME; Anhold J
    Environ Toxicol Chem; 2002 May; 21(5):1085-90. PubMed ID: 12013131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Buffer zones for reducing pesticide drift to ditches and risks to aquatic organisms.
    de Snoo GR; de Wit PJ
    Ecotoxicol Environ Saf; 1998 Sep; 41(1):112-8. PubMed ID: 9756699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What about upwind buffer zones for aerial applications?
    Kirk LW; Teske ME; Thistle HW
    J Agric Saf Health; 2002 Aug; 8(3):333-6. PubMed ID: 12363183
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spray drift of pesticides arising from aerial application in cotton.
    Woods N; Craig IP; Dorr G; Young B
    J Environ Qual; 2001; 30(3):697-701. PubMed ID: 11401259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of different sampling techniques for the evaluation of pesticide spray drift in apple orchards.
    Briand O; Bertrand F; Seux R; Millet M
    Sci Total Environ; 2002 Apr; 288(3):199-213. PubMed ID: 11991524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct and indirect drift assessment means. Part 3: field drift experiments.
    Nuyttens D; De Schampheleire M; Baetens K; Dekeyser D; Sonck B
    Commun Agric Appl Biol Sci; 2008; 73(4):763-7. PubMed ID: 19226826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the AgDISP aerial spray algorithms in the AgDRIFT model.
    Bird SL; Perry SG; Ray SL; Teske ME
    Environ Toxicol Chem; 2002 Mar; 21(3):672-81. PubMed ID: 11878481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Examining the role of wind in human illness due to pesticide drift in Washington state, 2000-2015.
    Kasner EJ; Prado JB; Yost MG; Fenske RA
    Environ Health; 2021 Mar; 20(1):26. PubMed ID: 33722241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.