BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 30779930)

  • 21. Automatic EEG-assisted retrospective motion correction for fMRI (aE-REMCOR).
    Wong CK; Zotev V; Misaki M; Phillips R; Luo Q; Bodurka J
    Neuroimage; 2016 Apr; 129():133-147. PubMed ID: 26826516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving the use of principal component analysis to reduce physiological noise and motion artifacts to increase the sensitivity of task-based fMRI.
    Soltysik DA; Thomasson D; Rajan S; Biassou N
    J Neurosci Methods; 2015 Feb; 241():18-29. PubMed ID: 25481542
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI.
    Pruim RHR; Mennes M; Buitelaar JK; Beckmann CF
    Neuroimage; 2015 May; 112():278-287. PubMed ID: 25770990
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temporal interpolation alters motion in fMRI scans: Magnitudes and consequences for artifact detection.
    Power JD; Plitt M; Kundu P; Bandettini PA; Martin A
    PLoS One; 2017; 12(9):e0182939. PubMed ID: 28880888
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolated assessment of translation or rotation severely underestimates the effects of subject motion in fMRI data.
    Wilke M
    PLoS One; 2014; 9(10):e106498. PubMed ID: 25333359
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reference layer artefact subtraction (RLAS): a novel method of minimizing EEG artefacts during simultaneous fMRI.
    Chowdhury ME; Mullinger KJ; Glover P; Bowtell R
    Neuroimage; 2014 Jan; 84():307-19. PubMed ID: 23994127
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prospective motion correction in functional MRI.
    Zaitsev M; Akin B; LeVan P; Knowles BR
    Neuroimage; 2017 Jul; 154():33-42. PubMed ID: 27845256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Serial correlations in single-subject fMRI with sub-second TR.
    Bollmann S; Puckett AM; Cunnington R; Barth M
    Neuroimage; 2018 Feb; 166():152-166. PubMed ID: 29066396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation and minimization of head motion-induced signal variations in fMRI data using independent component analysis.
    Liao R; McKeown MJ; Krolik JL
    Magn Reson Med; 2006 Jun; 55(6):1396-413. PubMed ID: 16676336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accurate autocorrelation modeling substantially improves fMRI reliability.
    Olszowy W; Aston J; Rua C; Williams GB
    Nat Commun; 2019 Dec; 10(1):1220. PubMed ID: 30899012
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comprehensive review of group level model performance in the presence of heteroscedasticity: Can a single model control Type I errors in the presence of outliers?
    Mumford JA
    Neuroimage; 2017 Feb; 147():658-668. PubMed ID: 28030782
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving temporal resolution in fMRI using a 3D spiral acquisition and low rank plus sparse (L+S) reconstruction.
    Petrov AY; Herbst M; Andrew Stenger V
    Neuroimage; 2017 Aug; 157():660-674. PubMed ID: 28684333
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prospective acquisition correction for head motion with image-based tracking for real-time fMRI.
    Thesen S; Heid O; Mueller E; Schad LR
    Magn Reson Med; 2000 Sep; 44(3):457-65. PubMed ID: 10975899
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The role of diversity in data-driven analysis of multi-subject fMRI data: Comparison of approaches based on independence and sparsity using global performance metrics.
    Long Q; Bhinge S; Levin-Schwartz Y; Boukouvalas Z; Calhoun VD; Adalı T
    Hum Brain Mapp; 2019 Feb; 40(2):489-504. PubMed ID: 30240499
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Imaging speech production using fMRI.
    Gracco VL; Tremblay P; Pike B
    Neuroimage; 2005 May; 26(1):294-301. PubMed ID: 15862230
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Custom-molded headcases have limited efficacy in reducing head motion during naturalistic fMRI experiments.
    Jolly E; Sadhukha S; Chang LJ
    Neuroimage; 2020 Nov; 222():117207. PubMed ID: 32745683
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Motion correction in MRI of the brain.
    Godenschweger F; Kägebein U; Stucht D; Yarach U; Sciarra A; Yakupov R; Lüsebrink F; Schulze P; Speck O
    Phys Med Biol; 2016 Mar; 61(5):R32-56. PubMed ID: 26864183
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Customized head molds reduce motion during resting state fMRI scans.
    Power JD; Silver BM; Silverman MR; Ajodan EL; Bos DJ; Jones RM
    Neuroimage; 2019 Apr; 189():141-149. PubMed ID: 30639840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pushing the spatio-temporal limits of MRI and fMRI.
    Yacoub E; Wald LL
    Neuroimage; 2018 Jan; 164():1-3. PubMed ID: 29254519
    [No Abstract]   [Full Text] [Related]  

  • 40. Implementation of Bayesian multiple comparison correction in the second-level analysis of fMRI data: With pilot analyses of simulation and real fMRI datasets based on voxelwise inference.
    Han H
    Cogn Neurosci; 2020 Jul; 11(3):157-169. PubMed ID: 31855500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.