These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30780043)

  • 1. Policy search in continuous action domains: An overview.
    Sigaud O; Stulp F
    Neural Netw; 2019 May; 113():28-40. PubMed ID: 30780043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Applications of Deep Learning and Reinforcement Learning to Biological Data.
    Mahmud M; Kaiser MS; Hussain A; Vassanelli S
    IEEE Trans Neural Netw Learn Syst; 2018 Jun; 29(6):2063-2079. PubMed ID: 29771663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning for Personalized Medicine: A Comprehensive Review From a Deep Learning Perspective.
    Zhang S; Bamakan SMH; Qu Q; Li S
    IEEE Rev Biomed Eng; 2019; 12():194-208. PubMed ID: 30106692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concept learning through deep reinforcement learning with memory-augmented neural networks.
    Shi J; Xu J; Yao Y; Xu B
    Neural Netw; 2019 Feb; 110():47-54. PubMed ID: 30496914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on a learning rate with energy index in deep learning.
    Zhao H; Liu F; Zhang H; Liang Z
    Neural Netw; 2019 Feb; 110():225-231. PubMed ID: 30599419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variational policy search using sparse Gaussian process priors for learning multimodal optimal actions.
    Sasaki H; Matsubara T
    Neural Netw; 2021 Nov; 143():291-302. PubMed ID: 34166892
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinforcement learning of motor skills with policy gradients.
    Peters J; Schaal S
    Neural Netw; 2008 May; 21(4):682-97. PubMed ID: 18482830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Policy search with rare significant events: Choosing the right partner to cooperate with.
    Ecoffet P; Fontbonne N; André JB; Bredeche N
    PLoS One; 2022; 17(4):e0266841. PubMed ID: 35472212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarking for Bayesian Reinforcement Learning.
    Castronovo M; Ernst D; Couëtoux A; Fonteneau R
    PLoS One; 2016; 11(6):e0157088. PubMed ID: 27304891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Why Deep Learning Is Changing the Way to Approach NGS Data Processing: A Review.
    Celesti F; Celesti A; Wan J; Villari M
    IEEE Rev Biomed Eng; 2018; 11():68-76. PubMed ID: 29993643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reward-weighted regression with sample reuse for direct policy search in reinforcement learning.
    Hachiya H; Peters J; Sugiyama M
    Neural Comput; 2011 Nov; 23(11):2798-832. PubMed ID: 21851281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Belief Networks for Electroencephalography: A Review of Recent Contributions and Future Outlooks.
    Movahedi F; Coyle JL; Sejdic E
    IEEE J Biomed Health Inform; 2018 May; 22(3):642-652. PubMed ID: 28715343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approximate Policy-Based Accelerated Deep Reinforcement Learning.
    Wang X; Gu Y; Cheng Y; Liu A; Chen CLP
    IEEE Trans Neural Netw Learn Syst; 2020 Jun; 31(6):1820-1830. PubMed ID: 31398131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity Evolutionary Policy Deep Reinforcement Learning.
    Liu J; Feng L
    Comput Intell Neurosci; 2021; 2021():5300189. PubMed ID: 34394336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. t-soft update of target network for deep reinforcement learning.
    Kobayashi T; Ilboudo WEL
    Neural Netw; 2021 Apr; 136():63-71. PubMed ID: 33450653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acceleration of reinforcement learning by policy evaluation using nonstationary iterative method.
    Senda K; Hattori S; Hishinuma T; Kohda T
    IEEE Trans Cybern; 2014 Dec; 44(12):2696-705. PubMed ID: 24733037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient sample reuse in policy gradients with parameter-based exploration.
    Zhao T; Hachiya H; Tangkaratt V; Morimoto J; Sugiyama M
    Neural Comput; 2013 Jun; 25(6):1512-47. PubMed ID: 23517103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reinforcement Learning for Improving Agent Design.
    Ha D
    Artif Life; 2019; 25(4):352-365. PubMed ID: 31697584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accelerating deep learning with memcomputing.
    Manukian H; Traversa FL; Di Ventra M
    Neural Netw; 2019 Feb; 110():1-7. PubMed ID: 30458316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kernel-based least squares policy iteration for reinforcement learning.
    Xu X; Hu D; Lu X
    IEEE Trans Neural Netw; 2007 Jul; 18(4):973-92. PubMed ID: 17668655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.