These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

484 related articles for article (PubMed ID: 30780045)

  • 1. Continual lifelong learning with neural networks: A review.
    Parisi GI; Kemker R; Part JL; Kanan C; Wermter S
    Neural Netw; 2019 May; 113():54-71. PubMed ID: 30780045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lifelong Learning of Spatiotemporal Representations With Dual-Memory Recurrent Self-Organization.
    Parisi GI; Tani J; Weber C; Wermter S
    Front Neurorobot; 2018; 12():78. PubMed ID: 30546302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lifelong learning of human actions with deep neural network self-organization.
    Parisi GI; Tani J; Weber C; Wermter S
    Neural Netw; 2017 Dec; 96():137-149. PubMed ID: 29017140
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lifelong 3D object recognition and grasp synthesis using dual memory recurrent self-organization networks.
    Santhakumar K; Kasaei H
    Neural Netw; 2022 Jun; 150():167-180. PubMed ID: 35313248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Born to learn: The inspiration, progress, and future of evolved plastic artificial neural networks.
    Soltoggio A; Stanley KO; Risi S
    Neural Netw; 2018 Dec; 108():48-67. PubMed ID: 30142505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tree-CNN: A hierarchical Deep Convolutional Neural Network for incremental learning.
    Roy D; Panda P; Roy K
    Neural Netw; 2020 Jan; 121():148-160. PubMed ID: 31563011
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lifelong Adaptive Machine Learning for Sensor-Based Human Activity Recognition Using Prototypical Networks.
    Adaimi R; Thomaz E
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overcoming Long-Term Catastrophic Forgetting Through Adversarial Neural Pruning and Synaptic Consolidation.
    Peng J; Tang B; Jiang H; Li Z; Lei Y; Lin T; Li H
    IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):4243-4256. PubMed ID: 33577459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incremental Concept Learning via Online Generative Memory Recall.
    Li H; Dong W; Hu BG
    IEEE Trans Neural Netw Learn Syst; 2021 Jul; 32(7):3206-3216. PubMed ID: 32759086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning Then, Learning Now, and Every Second in Between: Lifelong Learning With a Simulated Humanoid Robot.
    Logacjov A; Kerzel M; Wermter S
    Front Neurorobot; 2021; 15():669534. PubMed ID: 34276332
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural modularity helps organisms evolve to learn new skills without forgetting old skills.
    Ellefsen KO; Mouret JB; Clune J
    PLoS Comput Biol; 2015 Apr; 11(4):e1004128. PubMed ID: 25837826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Memory Recall: A Simple Neural Network Training Framework Against Catastrophic Forgetting.
    Zhang B; Guo Y; Li Y; He Y; Wang H; Dai Q
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):2010-2022. PubMed ID: 34339377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adversarial Feature Alignment: Avoid Catastrophic Forgetting in Incremental Task Lifelong Learning.
    Yao X; Huang T; Wu C; Zhang RX; Sun L
    Neural Comput; 2019 Nov; 31(11):2266-2291. PubMed ID: 31525313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triple-Memory Networks: A Brain-Inspired Method for Continual Learning.
    Wang L; Lei B; Li Q; Su H; Zhu J; Zhong Y
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):1925-1934. PubMed ID: 34529579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A domain-agnostic approach for characterization of lifelong learning systems.
    Baker MM; New A; Aguilar-Simon M; Al-Halah Z; Arnold SMR; Ben-Iwhiwhu E; Brna AP; Brooks E; Brown RC; Daniels Z; Daram A; Delattre F; Dellana R; Eaton E; Fu H; Grauman K; Hostetler J; Iqbal S; Kent C; Ketz N; Kolouri S; Konidaris G; Kudithipudi D; Learned-Miller E; Lee S; Littman ML; Madireddy S; Mendez JA; Nguyen EQ; Piatko C; Pilly PK; Raghavan A; Rahman A; Ramakrishnan SK; Ratzlaff N; Soltoggio A; Stone P; Sur I; Tang Z; Tiwari S; Vedder K; Wang F; Xu Z; Yanguas-Gil A; Yedidsion H; Yu S; Vallabha GK
    Neural Netw; 2023 Mar; 160():274-296. PubMed ID: 36709531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continual Learning for Activity Recognition.
    Kumar Sah R; Mirzadeh SI; Ghasemzadeh H
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2416-2420. PubMed ID: 36085745
    [TBL] [Abstract][Full Text] [Related]  

  • 17. VLAD: Task-agnostic VAE-based lifelong anomaly detection.
    Faber K; Corizzo R; Sniezynski B; Japkowicz N
    Neural Netw; 2023 Aug; 165():248-273. PubMed ID: 37307668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A wholistic view of continual learning with deep neural networks: Forgotten lessons and the bridge to active and open world learning.
    Mundt M; Hong Y; Pliushch I; Ramesh V
    Neural Netw; 2023 Mar; 160():306-336. PubMed ID: 36724547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual memory model for experience-once task-incremental lifelong learning.
    Ma G; Jiang R; Wang L; Tang H
    Neural Netw; 2023 Sep; 166():174-187. PubMed ID: 37494763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled Forgetting: Targeted Stimulation and Dopaminergic Plasticity Modulation for Unsupervised Lifelong Learning in Spiking Neural Networks.
    Allred JM; Roy K
    Front Neurosci; 2020; 14():7. PubMed ID: 32063827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.