BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 30780142)

  • 1. Covalent organic framework with high capacity for the lithium ion battery anode: insight into intercalation of Li from first-principles calculations.
    Fang L; Cao X; Cao Z
    J Phys Condens Matter; 2019 May; 31(20):205502. PubMed ID: 30780142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent-Organic-Framework-Based Li-CO
    Li X; Wang H; Chen Z; Xu HS; Yu W; Liu C; Wang X; Zhang K; Xie K; Loh KP
    Adv Mater; 2019 Nov; 31(48):e1905879. PubMed ID: 31609043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High Conductive Two-Dimensional Covalent Organic Framework for Lithium Storage with Large Capacity.
    Yang H; Zhang S; Han L; Zhang Z; Xue Z; Gao J; Li Y; Huang C; Yi Y; Liu H; Li Y
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5366-75. PubMed ID: 26840757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cationic covalent-organic framework for sulfur storage with high-performance in lithium-sulfur batteries.
    Wang S; Liang Y; Dai T; Liu Y; Sui Z; Tian X; Chen Q
    J Colloid Interface Sci; 2021 Jun; 591():264-272. PubMed ID: 33607400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functionalized Graphene Quantum Dots Modified Dioxin-Linked Covalent Organic Frameworks for Superior Lithium Storage.
    Wang H; Zhao L; Tang X; Lv LP; Sun W; Wang Y
    Chemistry; 2022 Feb; 28(12):e202103901. PubMed ID: 35028990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional covalent organic frameworks made of triquinoxalinylene derivatives are promising anodes for high-performance lithium and sodium ion batteries.
    Xu T; Yang Y; Liu T; Jing Y
    RSC Adv; 2023 Nov; 13(49):34724-34732. PubMed ID: 38035235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Truxenone-based Covalent Organic Framework as an All-Solid-State Lithium-Ion Battery Cathode with High Capacity.
    Yang X; Hu Y; Dunlap N; Wang X; Huang S; Su Z; Sharma S; Jin Y; Huang F; Wang X; Lee SH; Zhang W
    Angew Chem Int Ed Engl; 2020 Nov; 59(46):20385-20389. PubMed ID: 32722860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting the Capacity of Aqueous Li-Ion Capacitors via Pinpoint Surgery in Nanocoral-Like Covalent Organic Frameworks.
    Geng Q; Wang H; Wang J; Hong J; Sun W; Wu Y; Wang Y
    Small Methods; 2022 Aug; 6(8):e2200314. PubMed ID: 35691937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Microporous Covalent-Organic Framework with Abundant Accessible Carbonyl Groups for Lithium-Ion Batteries.
    Luo Z; Liu L; Ning J; Lei K; Lu Y; Li F; Chen J
    Angew Chem Int Ed Engl; 2018 Jul; 57(30):9443-9446. PubMed ID: 29863784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imine-Induced Metal-Organic and Covalent Organic Coexisting Framework with Superior Li-Storage Properties and Activation Mechanism.
    Zhao L; Tang X; Lv LP; Chen S; Sun W; Wang Y
    ChemSusChem; 2021 Aug; 14(16):3283-3292. PubMed ID: 34142447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Lithium-Affinity Chemically Exfoliated 2D Covalent Organic Frameworks.
    Chen X; Li Y; Wang L; Xu Y; Nie A; Li Q; Wu F; Sun W; Zhang X; Vajtai R; Ajayan PM; Chen L; Wang Y
    Adv Mater; 2019 Jul; 31(29):e1901640. PubMed ID: 31155765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two Birds One Stone: Graphene Assisted Reaction Kinetics and Ionic Conductivity in Phthalocyanine-Based Covalent Organic Framework Anodes for Lithium-ion Batteries.
    Zhao J; Zhou M; Chen J; Wang L; Zhang Q; Zhong S; Xie H; Li Y
    Small; 2023 Nov; 19(44):e2303353. PubMed ID: 37391276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lithium insertion in nanostructured TiO(2)(B) architectures.
    Dylla AG; Henkelman G; Stevenson KJ
    Acc Chem Res; 2013 May; 46(5):1104-12. PubMed ID: 23425042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential Application of Graphene/Antimonene Herterostructure as an Anode for Li-Ion Batteries: A First-Principles Study.
    Wu P; Li P; Huang M
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31658597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multilayer structure covalent organic frameworks (COFs) linking by double functional groups for advanced K
    Su Z; Huang J; Wang R; Zhang Y; Zeng L; Zhang Y; Fan H
    J Colloid Interface Sci; 2023 Jun; 639():7-13. PubMed ID: 36796111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO
    Huang S; Chen D; Meng C; Wang S; Ren S; Han D; Xiao M; Sun L; Meng Y
    Small; 2019 Dec; 15(49):e1904830. PubMed ID: 31714015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alkynyl-Based Covalent Organic Frameworks as High-Performance Anode Materials for Potassium-Ion Batteries.
    Wolfson ER; Schkeryantz L; Moscarello EM; Fernandez JP; Paszek J; Wu Y; Hadad CM; McGrier PL
    ACS Appl Mater Interfaces; 2021 Sep; 13(35):41628-41636. PubMed ID: 34448573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-Covalent Organic Framework Nanofilms Assembled Lithium-Ion Capacitor to Solve the Imbalanced Charge Storage Kinetics.
    Xu X; Zhang J; Zhang Z; Lu G; Cao W; Wang N; Xia Y; Feng Q; Qiao S
    Nanomicro Lett; 2024 Feb; 16(1):116. PubMed ID: 38358567
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation on the adsorption and transport properties of lithium ion in the covalent organic framework/carbon nanotube composite by molecular simulation.
    Xu Y; Fang H; Wang J; Cui Z; Wu F
    J Mol Graph Model; 2022 Dec; 117():108318. PubMed ID: 36088766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of electrochemical lithiation of a metal-organic framework without redox-active nodes.
    Tang B; Huang S; Fang Y; Hu J; Malonzo C; Truhlar DG; Stein A
    J Chem Phys; 2016 May; 144(19):194702. PubMed ID: 27208960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.