BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30780257)

  • 1. Role of higher-order Hermite polynomials in the central-moments-based lattice Boltzmann framework.
    De Rosis A; Luo KH
    Phys Rev E; 2019 Jan; 99(1-1):013301. PubMed ID: 30780257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating forcing terms in cascaded lattice Boltzmann approach by method of central moments.
    Premnath KN; Banerjee S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036702. PubMed ID: 19905241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized equilibria for color-gradient lattice Boltzmann model based on higher-order Hermite polynomials: A simplified implementation with central moments.
    Saito S; Takada N; Baba S; Someya S; Ito H
    Phys Rev E; 2023 Dec; 108(6-2):065305. PubMed ID: 38243429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized local equilibrium in the cascaded lattice Boltzmann method.
    Asinari P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016701. PubMed ID: 18764075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive comparison of collision models in the lattice Boltzmann framework: Theoretical investigations.
    Coreixas C; Chopard B; Latt J
    Phys Rev E; 2019 Sep; 100(3-1):033305. PubMed ID: 31639944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lattice Boltzmann method for bosons and fermions and the fourth-order Hermite polynomial expansion.
    Coelho RC; Ilha A; Doria MM; Pereira RM; Aibe VY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043302. PubMed ID: 24827360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Central-moment-based Galilean-invariant multiple-relaxation-time collision model.
    Shan X
    Phys Rev E; 2019 Oct; 100(4-1):043308. PubMed ID: 31771023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From the continuous to the lattice Boltzmann equation: the discretization problem and thermal models.
    Philippi PC; Hegele LA; Dos Santos LO; Surmas R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056702. PubMed ID: 16803069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lattice Boltzmann modeling and simulation of liquid jet breakup.
    Saito S; Abe Y; Koyama K
    Phys Rev E; 2017 Jul; 96(1-1):013317. PubMed ID: 29347180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Galilean-invariant preconditioned central-moment lattice Boltzmann method without cubic velocity errors for efficient steady flow simulations.
    Hajabdollahi F; Premnath KN
    Phys Rev E; 2018 May; 97(5-1):053303. PubMed ID: 29906868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Higher-order Galilean-invariant lattice Boltzmann model for microflows: single-component gas.
    Yudistiawan WP; Kwak SK; Patil DV; Ansumali S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046701. PubMed ID: 21230406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gauss-Hermite quadratures and accuracy of lattice Boltzmann models for nonequilibrium gas flows.
    Meng J; Zhang Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036704. PubMed ID: 21517622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of collision models on the physical properties and the stability of lattice Boltzmann methods.
    Coreixas C; Wissocq G; Chopard B; Latt J
    Philos Trans A Math Phys Eng Sci; 2020 Jul; 378(2175):20190397. PubMed ID: 32564722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio.
    Hu K; Zhang H; Geng S
    Phys Rev E; 2016 Oct; 94(4-1):043314. PubMed ID: 27841553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-scaled collision process for the high-order lattice Boltzmann model.
    Li X; Shi Y; Shan X
    Phys Rev E; 2019 Jul; 100(1-1):013301. PubMed ID: 31499796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preconditioned lattice Boltzmann method for steady flows: A noncascaded central-moments-based approach.
    De Rosis A
    Phys Rev E; 2017 Dec; 96(6-1):063308. PubMed ID: 29347418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multiple-relaxation-time collision model by Hermite expansion.
    Shan X; Li X; Shi Y
    Philos Trans A Math Phys Eng Sci; 2021 Oct; 379(2208):20200406. PubMed ID: 34455846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consistent lifting relations for the initialization of total-energy double-distribution-function kinetic models.
    Qi Y; Wang LP; Guo Z; Chen S
    Phys Rev E; 2023 Dec; 108(6-2):065301. PubMed ID: 38243425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytic solution for a higher-order lattice Boltzmann method: slip velocity and Knudsen layer.
    Kim SH; Pitsch H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016702. PubMed ID: 18764076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entropy and Galilean invariance of lattice Boltzmann theories.
    Chikatamarla SS; Karlin IV
    Phys Rev Lett; 2006 Nov; 97(19):190601. PubMed ID: 17155607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.