These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30780257)

  • 1. Role of higher-order Hermite polynomials in the central-moments-based lattice Boltzmann framework.
    De Rosis A; Luo KH
    Phys Rev E; 2019 Jan; 99(1-1):013301. PubMed ID: 30780257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating forcing terms in cascaded lattice Boltzmann approach by method of central moments.
    Premnath KN; Banerjee S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):036702. PubMed ID: 19905241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized equilibria for color-gradient lattice Boltzmann model based on higher-order Hermite polynomials: A simplified implementation with central moments.
    Saito S; Takada N; Baba S; Someya S; Ito H
    Phys Rev E; 2023 Dec; 108(6-2):065305. PubMed ID: 38243429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generalized local equilibrium in the cascaded lattice Boltzmann method.
    Asinari P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016701. PubMed ID: 18764075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comprehensive comparison of collision models in the lattice Boltzmann framework: Theoretical investigations.
    Coreixas C; Chopard B; Latt J
    Phys Rev E; 2019 Sep; 100(3-1):033305. PubMed ID: 31639944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lattice Boltzmann method for bosons and fermions and the fourth-order Hermite polynomial expansion.
    Coelho RC; Ilha A; Doria MM; Pereira RM; Aibe VY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043302. PubMed ID: 24827360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Central-moment-based Galilean-invariant multiple-relaxation-time collision model.
    Shan X
    Phys Rev E; 2019 Oct; 100(4-1):043308. PubMed ID: 31771023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From the continuous to the lattice Boltzmann equation: the discretization problem and thermal models.
    Philippi PC; Hegele LA; Dos Santos LO; Surmas R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056702. PubMed ID: 16803069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lattice Boltzmann modeling and simulation of liquid jet breakup.
    Saito S; Abe Y; Koyama K
    Phys Rev E; 2017 Jul; 96(1-1):013317. PubMed ID: 29347180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Galilean-invariant preconditioned central-moment lattice Boltzmann method without cubic velocity errors for efficient steady flow simulations.
    Hajabdollahi F; Premnath KN
    Phys Rev E; 2018 May; 97(5-1):053303. PubMed ID: 29906868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Higher-order Galilean-invariant lattice Boltzmann model for microflows: single-component gas.
    Yudistiawan WP; Kwak SK; Patil DV; Ansumali S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046701. PubMed ID: 21230406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gauss-Hermite quadratures and accuracy of lattice Boltzmann models for nonequilibrium gas flows.
    Meng J; Zhang Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036704. PubMed ID: 21517622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of collision models on the physical properties and the stability of lattice Boltzmann methods.
    Coreixas C; Wissocq G; Chopard B; Latt J
    Philos Trans A Math Phys Eng Sci; 2020 Jul; 378(2175):20190397. PubMed ID: 32564722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoupled scheme based on the Hermite expansion to construct lattice Boltzmann models for the compressible Navier-Stokes equations with arbitrary specific heat ratio.
    Hu K; Zhang H; Geng S
    Phys Rev E; 2016 Oct; 94(4-1):043314. PubMed ID: 27841553
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-scaled collision process for the high-order lattice Boltzmann model.
    Li X; Shi Y; Shan X
    Phys Rev E; 2019 Jul; 100(1-1):013301. PubMed ID: 31499796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preconditioned lattice Boltzmann method for steady flows: A noncascaded central-moments-based approach.
    De Rosis A
    Phys Rev E; 2017 Dec; 96(6-1):063308. PubMed ID: 29347418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multiple-relaxation-time collision model by Hermite expansion.
    Shan X; Li X; Shi Y
    Philos Trans A Math Phys Eng Sci; 2021 Oct; 379(2208):20200406. PubMed ID: 34455846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consistent lifting relations for the initialization of total-energy double-distribution-function kinetic models.
    Qi Y; Wang LP; Guo Z; Chen S
    Phys Rev E; 2023 Dec; 108(6-2):065301. PubMed ID: 38243425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytic solution for a higher-order lattice Boltzmann method: slip velocity and Knudsen layer.
    Kim SH; Pitsch H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016702. PubMed ID: 18764076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entropy and Galilean invariance of lattice Boltzmann theories.
    Chikatamarla SS; Karlin IV
    Phys Rev Lett; 2006 Nov; 97(19):190601. PubMed ID: 17155607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.