These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 30780262)

  • 1. Characterizing the impact of particle behavior at fracture intersections in three-dimensional discrete fracture networks.
    Sherman T; Hyman JD; Bolster D; Makedonska N; Srinivasan G
    Phys Rev E; 2019 Jan; 99(1-1):013110. PubMed ID: 30780262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling flow and transport in fracture networks using graphs.
    Karra S; O'Malley D; Hyman JD; Viswanathan HS; Srinivasan G
    Phys Rev E; 2018 Mar; 97(3-1):033304. PubMed ID: 29776097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalous transport on regular fracture networks: Impact of conductivity heterogeneity and mixing at fracture intersections.
    Kang PK; Dentz M; Le Borgne T; Juanes R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022148. PubMed ID: 26382384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation and analysis of solute transport in 2D fracture/pipe networks: the SOLFRAC program.
    Bodin J; Porel G; Delay F; Ubertosi F; Bernard S; de Dreuzy JR
    J Contam Hydrol; 2007 Jan; 89(1-2):1-28. PubMed ID: 16962206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graph-based flow modeling approach adapted to multiscale discrete-fracture-network models.
    Doolaeghe D; Davy P; Hyman JD; Darcel C
    Phys Rev E; 2020 Nov; 102(5-1):053312. PubMed ID: 33327073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Method to Represent a Well in a Three-Dimensional Discrete Fracture Network Model.
    Pham H; Parashar R; Sund N; Pohlmann K
    Ground Water; 2021 Mar; 59(2):281-286. PubMed ID: 32629530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixing and reaction kinetics in porous media: an experimental pore scale quantification.
    Anna Pd; Jimenez-Martinez J; Tabuteau H; Turuban R; Le Borgne T; Derrien M; Méheust Y
    Environ Sci Technol; 2014; 48(1):508-16. PubMed ID: 24274690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An interpretation of potential scale dependence of the effective matrix diffusion coefficient.
    Liu HH; Zhang YQ; Zhou Q; Molz FJ
    J Contam Hydrol; 2007 Feb; 90(1-2):41-57. PubMed ID: 17067718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of Geometric Characteristics on Water Flow and Solute Transport at Fracture Intersections.
    Qian J; Liang X; Liu Y; Ma L; Li X; Zhang C
    Ground Water; 2024 Jan; ():. PubMed ID: 38270260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lattice Boltzmann simulation of fluid flow in fracture networks with rough, self-affine surfaces.
    Madadi M; Sahimi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026309. PubMed ID: 12636802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid inertia controls mineral precipitation and clogging in pore to network-scale flows.
    Yang W; Chen MA; Lee SH; Kang PK
    Proc Natl Acad Sci U S A; 2024 Jul; 121(28):e2401318121. PubMed ID: 38968103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional simulation of grain mixing in three different rotating drum designs for solid-state fermentation.
    Schutyser MA; Weber FJ; Briels WJ; Boom RM; Rinzema A
    Biotechnol Bioeng; 2002 Aug; 79(3):284-94. PubMed ID: 12115417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of reservoir heterogeneity on scaling of effective mass transfer coefficient for solute transport.
    Leung JY; Srinivasan S
    J Contam Hydrol; 2016 Sep; 192():181-193. PubMed ID: 27500749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding hydraulic fracturing: a multi-scale problem.
    Hyman JD; Jiménez-Martínez J; Viswanathan HS; Carey JW; Porter ML; Rougier E; Karra S; Kang Q; Frash L; Chen L; Lei Z; O'Malley D; Makedonska N
    Philos Trans A Math Phys Eng Sci; 2016 Oct; 374(2078):. PubMed ID: 27597789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Choice of dispersion coefficients in reactive transport calculations on smoothed fields.
    Cirpka OA
    J Contam Hydrol; 2002 Oct; 58(3-4):261-82. PubMed ID: 12400836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis and Visualization of Discrete Fracture Networks Using a Flow Topology Graph.
    Aldrich G; Hyman JD; Karra S; Gable CW; Makedonska N; Viswanathan H; Woodring J; Hamann B
    IEEE Trans Vis Comput Graph; 2017 Aug; 23(8):1896-1909. PubMed ID: 27333605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generalized Taylor-Aris dispersion in discrete spatially periodic networks: microfluidic applications.
    Dorfman KD; Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021103. PubMed ID: 11863499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Particle fracture regimes from impact simulations.
    Vu DC; Amarsid L; Delenne JY; Richefeu V; Radjai F
    Phys Rev E; 2024 Apr; 109(4-1):044907. PubMed ID: 38755914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical study of enhanced mixing in pressure-driven flows in microchannels using a spatially periodic electric field.
    Krishnaveni T; Renganathan T; Picardo JR; Pushpavanam S
    Phys Rev E; 2017 Sep; 96(3-1):033117. PubMed ID: 29347018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The injection-production performance of an enhanced geothermal system considering fracture network complexity and thermo-hydro-mechanical coupling in numerical simulations.
    Lei Z; Zhang Y; Cui Q; Shi Y
    Sci Rep; 2023 Sep; 13(1):14558. PubMed ID: 37666927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.