These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Fingerprint of chaos and quantum scars in kicked Dicke model: an out-of-time-order correlator study. Sinha S; Ray S; Sinha S J Phys Condens Matter; 2021 Apr; 33(17):. PubMed ID: 33530075 [TBL] [Abstract][Full Text] [Related]
6. Chaos Signatures in the Short and Long Time Behavior of the Out-of-Time Ordered Correlator. García-Mata I; Saraceno M; Jalabert RA; Roncaglia AJ; Wisniacki DA Phys Rev Lett; 2018 Nov; 121(21):210601. PubMed ID: 30517792 [TBL] [Abstract][Full Text] [Related]
7. Bound on the exponential growth rate of out-of-time-ordered correlators. Tsuji N; Shitara T; Ueda M Phys Rev E; 2018 Jul; 98(1-1):012216. PubMed ID: 30110834 [TBL] [Abstract][Full Text] [Related]
10. Out-of-time ordered correlators in kicked coupled tops: Information scrambling in mixed phase space and the role of conserved quantities. Varikuti ND; Madhok V Chaos; 2024 Jun; 34(6):. PubMed ID: 38856736 [TBL] [Abstract][Full Text] [Related]
11. Gauging classical and quantum integrability through out-of-time-ordered correlators. Fortes EM; García-Mata I; Jalabert RA; Wisniacki DA Phys Rev E; 2019 Oct; 100(4-1):042201. PubMed ID: 31770895 [TBL] [Abstract][Full Text] [Related]
12. Many-Body Quantum Interference and the Saturation of Out-of-Time-Order Correlators. Rammensee J; Urbina JD; Richter K Phys Rev Lett; 2018 Sep; 121(12):124101. PubMed ID: 30296114 [TBL] [Abstract][Full Text] [Related]
13. Positive quantum Lyapunov exponents in experimental systems with a regular classical limit. Pilatowsky-Cameo S; Chávez-Carlos J; Bastarrachea-Magnani MA; Stránský P; Lerma-Hernández S; Santos LF; Hirsch JG Phys Rev E; 2020 Jan; 101(1-1):010202. PubMed ID: 32069677 [TBL] [Abstract][Full Text] [Related]
14. Spatiotemporal spread of perturbations in a driven dissipative Duffing chain: An out-of-time-ordered correlator approach. Chatterjee AK; Kundu A; Kulkarni M Phys Rev E; 2020 Nov; 102(5-1):052103. PubMed ID: 33327101 [TBL] [Abstract][Full Text] [Related]
15. Finite-Size Scaling of Out-of-Time-Ordered Correlators at Late Times. Huang Y; Brandão FGSL; Zhang YL Phys Rev Lett; 2019 Jul; 123(1):010601. PubMed ID: 31386410 [TBL] [Abstract][Full Text] [Related]
16. Detecting Equilibrium and Dynamical Quantum Phase Transitions in Ising Chains via Out-of-Time-Ordered Correlators. Heyl M; Pollmann F; Dóra B Phys Rev Lett; 2018 Jul; 121(1):016801. PubMed ID: 30028149 [TBL] [Abstract][Full Text] [Related]
17. Quantum information scrambling in two-dimensional Bose-Hubbard lattices. Tripathy D; Touil A; Gardas B; Deffner S Chaos; 2024 Apr; 34(4):. PubMed ID: 38579152 [TBL] [Abstract][Full Text] [Related]
18. Relative asymptotic oscillations of the out-of-time-ordered correlator as a quantum chaos indicator. Novotný J; Stránský P Phys Rev E; 2023 May; 107(5-1):054220. PubMed ID: 37329084 [TBL] [Abstract][Full Text] [Related]
19. Quasi-integrable systems are slow to thermalize but may be good scramblers. Goldfriend T; Kurchan J Phys Rev E; 2020 Aug; 102(2-1):022201. PubMed ID: 32942492 [TBL] [Abstract][Full Text] [Related]
20. Chaotic dynamics of a non-Hermitian kicked particle. Huang KQ; Wang J; Zhao WL; Liu J J Phys Condens Matter; 2020 Nov; 33(5):. PubMed ID: 32998121 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]