These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 3078121)

  • 21. Alx1, a member of the Cart1/Alx3/Alx4 subfamily of Paired-class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo.
    Ettensohn CA; Illies MR; Oliveri P; De Jong DL
    Development; 2003 Jul; 130(13):2917-28. PubMed ID: 12756175
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cell lineage conversion in the sea urchin embryo.
    Ettensohn CA; McClay DR
    Dev Biol; 1988 Feb; 125(2):396-409. PubMed ID: 3338620
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Studies on the cellular basis of morphogenesis in the sea urchin embryo. Directed movements of primary mesenchyme cells in normal and vegetalized larvae.
    Gustafson T; Wolpert L
    Exp Cell Res; 1999 Dec; 253(2):288-95. PubMed ID: 10585249
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transient, localized accumulation of alpha-spectrin during sea urchin morphogenesis.
    Wessel GM; Chen SW
    Dev Biol; 1993 Jan; 155(1):161-71. PubMed ID: 8416831
    [TBL] [Abstract][Full Text] [Related]  

  • 25. HpEts implicated in primary mesenchyme cell differentiation of the sea urchin (Hemicentrotus pulcherrimus) embryo.
    Kurokawa D; Kitajima T; Mitsunaga-Nakatsubo K; Amemiya S; Shimada H; Akasaka K
    Zygote; 2000; 8 Suppl 1():S33-4. PubMed ID: 11191299
    [No Abstract]   [Full Text] [Related]  

  • 26. Isolation and culture of micromeres and primary mesenchyme cells.
    Wilt FH; Benson SC
    Methods Cell Biol; 2004; 74():273-85. PubMed ID: 15575611
    [No Abstract]   [Full Text] [Related]  

  • 27. Skeletal pattern is specified autonomously by the primary mesenchyme cells in sea urchin embryos.
    Armstrong N; McClay DR
    Dev Biol; 1994 Apr; 162(2):329-38. PubMed ID: 8150198
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dependence of sea urchin primary mesenchyme cell migration on xyloside- and sulfate-sensitive cell surface-associated components.
    Lane MC; Solursh M
    Dev Biol; 1988 May; 127(1):78-87. PubMed ID: 3360213
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gastrulation in the sea urchin embryo is accompanied by the rearrangement of invaginating epithelial cells.
    Ettensohn CA
    Dev Biol; 1985 Dec; 112(2):383-90. PubMed ID: 4076547
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cellular interactions during cartilage and bone development.
    Hall BK
    J Craniofac Genet Dev Biol; 1991; 11(4):238-50. PubMed ID: 1812127
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inversion of left-right asymmetry in the formation of the adult rudiment in sea urchin larvae: removal of a part of embryos at the gastrula stage.
    Aihara M; Amemiya S
    Zygote; 2000; 8 Suppl 1():S82-3. PubMed ID: 11191334
    [No Abstract]   [Full Text] [Related]  

  • 32. Ultrastructural and time-lapse studies of primary mesenchyme cell behavior in normal and sulfate-deprived sea urchin embryos.
    Katow H; Solursh M
    Exp Cell Res; 1981 Dec; 136(2):233-45. PubMed ID: 7308308
    [No Abstract]   [Full Text] [Related]  

  • 33. Cell movements in the sea urchin embryo.
    Ettensohn CA
    Curr Opin Genet Dev; 1999 Aug; 9(4):461-5. PubMed ID: 10449348
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pamlin, a primary mesenchyme cell adhesion protein, in the basal lamina of the sea urchin embryo.
    Katow H
    Exp Cell Res; 1995 Jun; 218(2):469-78. PubMed ID: 7796882
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studies on the cellular pathway involved in assembly of the embryonic sea urchin spicule.
    Hwang SP; Lennarz WJ
    Exp Cell Res; 1993 Apr; 205(2):383-7. PubMed ID: 8482343
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gastrulation in the sea urchin embryo: a model system for analyzing the morphogenesis of a monolayered epithelium.
    Kominami T; Takata H
    Dev Growth Differ; 2004 Aug; 46(4):309-26. PubMed ID: 15367199
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cell interactions in the sea urchin embryo studied by fluorescence photoablation.
    Ettensohn CA
    Science; 1990 Jun; 248(4959):1115-8. PubMed ID: 2188366
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study of larval and adult skeletogenic cells in developing sea urchin larvae.
    Yajima M; Kiyomoto M
    Biol Bull; 2006 Oct; 211(2):183-92. PubMed ID: 17062877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A monoclonal antibody inhibits calcium accumulation and skeleton formation in cultured embryonic cells of the sea urchin.
    Carson DD; Farach MC; Earles DS; Decker GL; Lennarz WJ
    Cell; 1985 Jun; 41(2):639-48. PubMed ID: 3986913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antibodies to a fusion protein identify a cDNA clone encoding msp130, a primary mesenchyme-specific cell surface protein of the sea urchin embryo.
    Leaf DS; Anstrom JA; Chin JE; Harkey MA; Showman RM; Raff RA
    Dev Biol; 1987 May; 121(1):29-40. PubMed ID: 3569664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.