These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 3078121)

  • 41. Regulative development of the sea urchin embryo: signalling cascades and morphogen gradients.
    Angerer LM; Angerer RC
    Semin Cell Dev Biol; 1999 Jun; 10(3):327-34. PubMed ID: 10441547
    [TBL] [Abstract][Full Text] [Related]  

  • 42. EMT 2.0: shaping epithelia through collective migration.
    Revenu C; Gilmour D
    Curr Opin Genet Dev; 2009 Aug; 19(4):338-42. PubMed ID: 19464162
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mitochondrial morphogenesis during sea urchin spermiogenesis.
    Gallo VP; Nicotra A
    Riv Biol; 1977; 70(3-4):265-81. PubMed ID: 616008
    [No Abstract]   [Full Text] [Related]  

  • 44. Cell surface glycosyltransferase activities during normal and mutant (T/T) mesenchyme migration.
    Shur BD
    Dev Biol; 1982 May; 91(1):149-62. PubMed ID: 6807728
    [No Abstract]   [Full Text] [Related]  

  • 45. Role of the ERK-mediated signaling pathway in mesenchyme formation and differentiation in the sea urchin embryo.
    Fernandez-Serra M; Consales C; Livigni A; Arnone MI
    Dev Biol; 2004 Apr; 268(2):384-402. PubMed ID: 15063175
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Runx2 mediates FGF signaling from epithelium to mesenchyme during tooth morphogenesis.
    Aberg T; Wang XP; Kim JH; Yamashiro T; Bei M; Rice R; Ryoo HM; Thesleff I
    Dev Biol; 2004 Jun; 270(1):76-93. PubMed ID: 15136142
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus.
    Gross JM; McClay DR
    Dev Biol; 2001 Nov; 239(1):132-47. PubMed ID: 11784024
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microfilaments, cell shape changes, and the formation of primary mesenchyme in sea urchin embryos.
    Anstrom JA
    J Exp Zool; 1992 Dec; 264(3):312-22. PubMed ID: 1358997
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Jun N-terminal kinase activity is required for invagination but not differentiation of the sea urchin archenteron.
    Long JT; Irwin L; Enomoto AC; Grow Z; Ranck J; Peeler MT
    Genesis; 2015 Dec; 53(12):762-9. PubMed ID: 26297876
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genome-wide analysis of the skeletogenic gene regulatory network of sea urchins.
    Rafiq K; Shashikant T; McManus CJ; Ettensohn CA
    Development; 2014 Feb; 141(4):950-61. PubMed ID: 24496631
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spatially mapping gene expression in sea urchin primary mesenchyme cells.
    Zuch DT; Bradham CA
    Methods Cell Biol; 2019; 151():433-442. PubMed ID: 30948024
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Occurrence of fibronectin on the primary mesenchyme cell surface during migration in the sea urchin embryo.
    Katow H; Yamada KM; Solursh M
    Differentiation; 1982; 22(2):120-4. PubMed ID: 6751910
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Epithelium-mesenchyme transition during neural crest development.
    Duband JL; Monier F; Delannet M; Newgreen D
    Acta Anat (Basel); 1995; 154(1):63-78. PubMed ID: 8714290
    [TBL] [Abstract][Full Text] [Related]  

  • 54. KirrelL, a member of the Ig-domain superfamily of adhesion proteins, is essential for fusion of primary mesenchyme cells in the sea urchin embryo.
    Ettensohn CA; Dey D
    Dev Biol; 2017 Jan; 421(2):258-270. PubMed ID: 27866905
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification and developmental expression of new biomineralization proteins in the sea urchin Strongylocentrotus purpuratus.
    Illies MR; Peeler MT; Dechtiaruk AM; Ettensohn CA
    Dev Genes Evol; 2002 Oct; 212(9):419-31. PubMed ID: 12373587
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Larval mesenchyme cell specification in the primitive echinoid occurs independently of the double-negative gate.
    Yamazaki A; Kidachi Y; Yamaguchi M; Minokawa T
    Development; 2014 Jul; 141(13):2669-79. PubMed ID: 24924196
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Eph and Ephrin function in dispersal and epithelial insertion of pigmented immunocytes in sea urchin embryos.
    Krupke OA; Zysk I; Mellott DO; Burke RD
    Elife; 2016 Jul; 5():. PubMed ID: 27474796
    [TBL] [Abstract][Full Text] [Related]  

  • 58. New insights from a high-resolution look at gastrulation in the sea urchin, Lytechinus variegatus.
    Martik ML; McClay DR
    Mech Dev; 2017 Dec; 148():3-10. PubMed ID: 28684256
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Skeletogenesis in the sea urchin embryo.
    Decker GL; Lennarz WJ
    Development; 1988 Jun; 103(2):231-47. PubMed ID: 3066610
    [No Abstract]   [Full Text] [Related]  

  • 60. TGF-β sensu stricto signaling regulates skeletal morphogenesis in the sea urchin embryo.
    Sun Z; Ettensohn CA
    Dev Biol; 2017 Jan; 421(2):149-160. PubMed ID: 27955944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.