BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30781422)

  • 21. Evaluating the efficacy of vermicomposted products in rain-fed wetland rice and predicting potential hazards from metal-contaminated tannery sludge using novel machine learning tactic.
    Chakraborty P; Ghosh S; Banerjee S; Bhattacharya S; Bhattacharyya P
    Chemosphere; 2024 Jun; 358():142272. PubMed ID: 38719128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulating the migration and species distribution of Cr and inorganic ions from tanneries in the vadose zone.
    Guo SS; Xu YH; Yang JY
    J Environ Manage; 2021 Jun; 288():112441. PubMed ID: 33823454
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of an organic carbon-rich soil and Fe(III) reduction in reducing the toxicity and environmental mobility of chromium(VI) at a COPR disposal site.
    Ding W; Stewart DI; Humphreys PN; Rout SP; Burke IT
    Sci Total Environ; 2016 Jan; 541():1191-1199. PubMed ID: 26476060
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of Cr from tannery sludge by bioleaching method.
    Zhou SG; Zhou LX; Wang SM; Fang D
    J Environ Sci (China); 2006; 18(5):885-90. PubMed ID: 17278742
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste.
    Megharaj M; Avudainayagam S; Naidu R
    Curr Microbiol; 2003 Jul; 47(1):51-4. PubMed ID: 12783193
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Less abundant bacterial groups are more affected than the most abundant groups in composted tannery sludge-treated soil.
    Miranda ARL; Antunes JEL; de Araujo FF; Melo VMM; Bezerra WM; Van den Brink PJ; Araujo ASF
    Sci Rep; 2018 Aug; 8(1):11755. PubMed ID: 30082922
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigating the chromium status, heavy metal contamination, and ecological risk assessment via tannery waste disposal in sub-Saharan Africa (Kenya and South Africa).
    Oruko RO; Edokpayi JN; Msagati TAM; Tavengwa NT; Ogola HJO; Ijoma G; Odiyo JO
    Environ Sci Pollut Res Int; 2021 Aug; 28(31):42135-42149. PubMed ID: 33797722
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Time-dependent effect of composted tannery sludge on the chemical and microbial properties of soil.
    de Sousa RS; Santos VM; de Melo WJ; Nunes LAPL; van den Brink PJ; Araújo ASF
    Ecotoxicology; 2017 Dec; 26(10):1366-1377. PubMed ID: 28975442
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NaH
    Ge R; E T; Cheng Y; Wang Y; Yu J; Li Y; Yang S
    J Environ Manage; 2024 Feb; 351():119843. PubMed ID: 38128209
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Soil microbial properties after 5 years of consecutive amendment with composted tannery sludge.
    Araujo AS; Miranda AR; Oliveira ML; Santos VM; Nunes LA; Melo WJ
    Environ Monit Assess; 2015 Jan; 187(1):4153. PubMed ID: 25404543
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling of Cr contamination in the agricultural lands of three villages near the leather industry in Kasur, Pakistan, using statistical and GIS techniques.
    Shafiq M; Shaukat T; Nazir A; Bareen FE
    Environ Monit Assess; 2017 Aug; 189(8):423. PubMed ID: 28762145
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessments of chromium (and other metals) in vegetables and potential bio-accumulations in humans living in areas affected by tannery wastes.
    Chen H; Arocena JM; Li J; Thring RW; Zhou J
    Chemosphere; 2014 Oct; 112():412-9. PubMed ID: 25048934
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community.
    Zeng J; Gou M; Tang YQ; Li GY; Sun ZY; Kida K
    Bioresour Technol; 2016 Oct; 218():859-66. PubMed ID: 27434303
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effects of Chromium Pollution on Soil Bacterial Community Structure and Assembly Processes].
    Yu H; An YJ; Jin DC; Jin T; Wang XR
    Huan Jing Ke Xue; 2021 Mar; 42(3):1197-1204. PubMed ID: 33742917
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chromium-microorganism interactions in soils: remediation implications.
    Kamaludeen SP; Megharaj M; Juhasz AL; Sethunathan N; Naidu R
    Rev Environ Contam Toxicol; 2003; 178():93-164. PubMed ID: 12868782
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Status of chromium accumulation in agricultural soils across China (1989-2016).
    Li X; Zhang J; Ma J; Liu Q; Shi T; Gong Y; Yang S; Wu Y
    Chemosphere; 2020 Oct; 256():127036. PubMed ID: 32428740
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pollution in the urban soils of Lianyungang, China, evaluated using a pollution index, mobility of heavy metals, and enzymatic activities.
    Li Y; Li HG; Liu FC
    Environ Monit Assess; 2017 Jan; 189(1):34. PubMed ID: 28013473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of tannic acid on the transport behavior of trivalent chromium in soils and its mechanism.
    Xu T; Jiang X; Tang Y; Zeng Y; Zhang W; Shi B
    Environ Pollut; 2022 Jul; 305():119328. PubMed ID: 35447257
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chromium Contamination from Tanning Industries and Phytoremediation Potential of Native Plants: A Study of Savar Tannery Industrial Estate in Dhaka, Bangladesh.
    Hasan SMM; Akber MA; Bahar MM; Islam MA; Akbor MA; Siddique MAB; Islam MA
    Bull Environ Contam Toxicol; 2021 Jun; 106(6):1024-1032. PubMed ID: 33991212
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A study of heavy metals and their fate in the composting of tannery sludge.
    Haroun M; Idris A; Syed Omar SR
    Waste Manag; 2007; 27(11):1541-50. PubMed ID: 17113767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.