BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30781422)

  • 61. Migration of leather tannins and chromium in soils under the effect of simulated rain.
    Qiao DW; Yao J; Song LJ; Yang JY
    Chemosphere; 2021 Dec; 284():131413. PubMed ID: 34323793
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Nitrogen, carbon and phosphorus mineralization in soils from semi-arid highlands of central Mexico amended with tannery sludge.
    Barajas-Aceves M; Dendooven L
    Bioresour Technol; 2001 Apr; 77(2):121-30. PubMed ID: 11272018
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Influence of organic acids on kinetic release of chromium in soil contaminated with leather factory waste in the presence of some adsorbents.
    Taghipour M; Jalali M
    Chemosphere; 2016 Jul; 155():395-404. PubMed ID: 27139119
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Phytoextraction capacity of the Chenopodium album L. grown on soil amended with tannery sludge.
    Gupta AK; Sinha S
    Bioresour Technol; 2007 Jan; 98(2):442-6. PubMed ID: 16540314
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Vitrification as an alternative to landfilling of tannery sewage sludge.
    Celary P; Sobik-Szołtysek J
    Waste Manag; 2014 Dec; 34(12):2520-7. PubMed ID: 25242604
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Metagenomic analysis of microbial community and its role in bioelectrokinetic remediation of tannery contaminated soil.
    Prakash AA; Rajasekar A; Sarankumar RK; AlSalhi MS; Devanesan S; Aljaafreh MJ; Govarthanan M; Sayed SRM
    J Hazard Mater; 2021 Jun; 412():125133. PubMed ID: 33524735
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Effect of waste addition points on the chromium leachability of cement produced by co-processing of tannery sludge.
    Shen D; Huang M; Feng H; Li N; Zhou Y; Long Y
    Waste Manag; 2017 Mar; 61():345-353. PubMed ID: 28190680
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Biochar Mediated-Alleviation of Chromium Stress and Growth Improvement of Different Maize Cultivars in Tannery Polluted Soils.
    Bashir MA; Wang X; Naveed M; Mustafa A; Ashraf S; Samreen T; Nadeem SM; Jamil M
    Int J Environ Res Public Health; 2021 Apr; 18(9):. PubMed ID: 33922303
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Chemical toxicity and ecotoxicity evaluation of tannery sludge stabilized with ladle furnace slag.
    Pantazopoulou E; Zouboulis A
    J Environ Manage; 2018 Jun; 216():257-262. PubMed ID: 28372833
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Incineration of tannery sludge under oxic and anoxic conditions: study of chromium speciation.
    Kavouras P; Pantazopoulou E; Varitis S; Vourlias G; Chrissafis K; Dimitrakopulos GP; Mitrakas M; Zouboulis AI; Karakostas T; Xenidis A
    J Hazard Mater; 2015; 283():672-9. PubMed ID: 25464309
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review.
    Dhal B; Thatoi HN; Das NN; Pandey BD
    J Hazard Mater; 2013 Apr; 250-251():272-91. PubMed ID: 23467183
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Bioleaching of Cr from tannery sludge: the effects of initial acid addition and recycling of acidified bioleached sludge.
    Zhou LX; Fang D; Wang SM; Wong JW; Wang DZ
    Environ Technol; 2005 Mar; 26(3):277-84. PubMed ID: 15881024
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Deciphering the rhizosphere microbiome of a bamboo plant in response to different chromium contamination levels.
    Zhang X; Bian F; Zhong Z; Gai X; Yang C
    J Hazard Mater; 2020 Nov; 399():123107. PubMed ID: 32937721
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Impact of river overflowing on trace element contamination of volcanic soils in south Italy: part II. Soil biological and biochemical properties in relation to trace element speciation.
    D'Ascoli R; Rao MA; Adamo P; Renella G; Landi L; Rutigliano FA; Terribile F; Gianfreda L
    Environ Pollut; 2006 Nov; 144(1):317-26. PubMed ID: 16406624
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Bioprospecting uncultivable microbial diversity in tannery effluent contaminated soil using shotgun sequencing and bio-reduction of chromium by indigenous chromate reductase genes.
    Singh A; Varma A; Prasad R; Porwal S
    Environ Res; 2022 Dec; 215(Pt 2):114338. PubMed ID: 36116499
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Assessing Chromium Contamination in Red Soil: Monitoring the Migration of Fractions and the Change of Related Microorganisms.
    Zhang S; Hao X; Tang J; Hu J; Deng Y; Xu M; Zhu P; Tao J; Liang Y; Yin H; Jiang L; Liu X; Liu H
    Int J Environ Res Public Health; 2020 Apr; 17(8):. PubMed ID: 32326110
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Vertical distribution of microbial communities in soils contaminated by chromium and perfluoroalkyl substances.
    Li B; Bao Y; Xu Y; Xie S; Huang J
    Sci Total Environ; 2017 Dec; 599-600():156-164. PubMed ID: 28475909
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Dosage-dependent shift in the spore community of arbuscular mycorrhizal fungi following application of tannery sludge.
    Nakatani AS; Mescolotti DLC; Nogueira MA; Martines AM; Miyauchi MYH; Stürmer SL; Cardoso EJBN
    Mycorrhiza; 2011 Aug; 21(6):515-522. PubMed ID: 21229273
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Processes of chromium (VI) migration and transformation in chromate production site: A case study from the middle of China.
    Wang X; Li L; Yan X; Meng X; Chen Y
    Chemosphere; 2020 Oct; 257():127282. PubMed ID: 32531491
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Analysis of heavy metals during composting of the tannery sludge using physicochemical and spectroscopic techniques.
    Haroun M; Idris A; Omar S
    J Hazard Mater; 2009 Jun; 165(1-3):111-9. PubMed ID: 18990495
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.