These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30781439)

  • 1. Waste Coffee Ground Biochar: A Material for Humidity Sensors.
    Jagdale P; Ziegler D; Rovere M; Tulliani JM; Tagliaferro AA
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of pyrolysis temperature and aging treatment on the adsorption of Cd
    Ke Y; Cui S; Fu Q; Hough R; Zhang Z; Li YF
    Chemosphere; 2022 Jun; 296():134051. PubMed ID: 35216977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of a Zn₂TiO₄ Gas Sensor to Propanol at Room Temperature.
    Gaidan I; Brabazon D; Ahad IU
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28858258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of magnetic biochar as a treatment medium for As(V) via pyrolysis of FeCl
    Cho DW; Yoon K; Kwon EE; Biswas JK; Song H
    Environ Pollut; 2017 Oct; 229():942-949. PubMed ID: 28778792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective sorption of atrazine by biochar colloids and residues derived from different pyrolysis temperatures.
    Yang F; Gao Y; Sun L; Zhang S; Li J; Zhang Y
    Environ Sci Pollut Res Int; 2018 Jul; 25(19):18528-18539. PubMed ID: 29700748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile Fabrication of MoS2-Modified SnO2 Hybrid Nanocomposite for Ultrasensitive Humidity Sensing.
    Zhang D; Sun Y; Li P; Zhang Y
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):14142-9. PubMed ID: 27192399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater.
    Chowdhury S; Balasubramanian R
    Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly sensitive and ultrafast response surface acoustic wave humidity sensor based on electrospun polyaniline/poly(vinyl butyral) nanofibers.
    Lin Q; Li Y; Yang M
    Anal Chim Acta; 2012 Oct; 748():73-80. PubMed ID: 23021810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Humidity Sensing Ceria Thin-Films.
    Mandić V; Bafti A; Pavić L; Panžić I; Kurajica S; Pavelić JS; Shi Z; Mužina K; Ivković IK
    Nanomaterials (Basel); 2022 Feb; 12(3):. PubMed ID: 35159866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of co-polyaniline nanocomposite thin films as humidity sensor.
    Fuke MV; Vijayan A; Kulkarni M; Hawaldar R; Aiyer RC
    Talanta; 2008 Sep; 76(5):1035-40. PubMed ID: 18761151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida).
    Kim KH; Kim JY; Cho TS; Choi JW
    Bioresour Technol; 2012 Aug; 118():158-62. PubMed ID: 22705519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensors based on mesoporous SnO
    Stanoiu A; Simion CE; Calderon-Moreno JM; Osiceanu P; Florea M; Teodorescu VS; Somacescu S
    J Hazard Mater; 2017 Jun; 331():150-160. PubMed ID: 28254662
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Highly Sensitive FET-Type Humidity Sensor with Inkjet-Printed Pt-In
    Wu M; Wu Z; Jin X; Lee JH
    Nanoscale Res Lett; 2020 Oct; 15(1):198. PubMed ID: 33052477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valorization of spent coffee grounds recycling as a potential alternative fuel resource in Turkey: An experimental study.
    Atabani AE; Mercimek SM; Arvindnarayan S; Shobana S; Kumar G; Cadir M; Al-Muhatseb AH
    J Air Waste Manag Assoc; 2018 Mar; 68(3):196-214. PubMed ID: 28829684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of the Active Carbon from Used Coffee Grounds as the Active Material for a High-Temperature Stable Supercapacitor with Ionic-Liquid Electrolyte.
    Biegun M; Dymerska A; Chen X; Mijowska E
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32899787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrothermal synthesis and humidity sensing properties of size-controlled Zirconium Oxide (ZrO2) nanorods.
    Wang Z; Lu Y; Yuan S; Shi L; Zhao Y; Zhang M; Deng W
    J Colloid Interface Sci; 2013 Apr; 396():9-15. PubMed ID: 23411357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical and humidity characterization of m-NA doped Au/PVA nanocomposites.
    Fuke MV; Adhyapak PV; Mulik UP; Amalnerkar DP; Aiyer RC
    Talanta; 2009 Apr; 78(2):590-5. PubMed ID: 19203629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Humidity impedimetric sensor based on vanadium pentoxide xerogel modified screen-printed graphite electrochemical cell.
    Trachioti MG; Prodromidis MI
    Talanta; 2020 Aug; 216():121003. PubMed ID: 32456925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a sulfonated polycarbonate resistive humidity sensor.
    Rubinger CP; Calado HD; Rubinger RM; Oliveira H; Donnici CL
    Sensors (Basel); 2013 Feb; 13(2):2023-32. PubMed ID: 23385415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-compatible organic humidity sensor transferred to arbitrary surfaces fabricated using single-cell-thick onion membrane as both the substrate and sensing layer.
    Sajid M; Aziz S; Kim GB; Kim SW; Jo J; Choi KH
    Sci Rep; 2016 Jul; 6():30065. PubMed ID: 27436586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.