These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30781487)

  • 1. Parallel Mechanism of Spectral Feature-Enhanced Maps in EEG-Based Cognitive Workload Classification.
    Zhang Y; Shen Y
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spectral and Temporal Feature Learning With Two-Stream Neural Networks for Mental Workload Assessment.
    Zhang P; Wang X; Chen J; You W; Zhang W
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jun; 27(6):1149-1159. PubMed ID: 31034417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning Spatial-Spectral-Temporal EEG Features With Recurrent 3D Convolutional Neural Networks for Cross-Task Mental Workload Assessment.
    Zhang P; Wang X; Zhang W; Chen J
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jan; 27(1):31-42. PubMed ID: 30507536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal2Image Modules in Deep Neural Networks for EEG Classification.
    Bizopoulos P; Lambrou GI; Koutsouris D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():702-705. PubMed ID: 31945994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-task cognitive workload recognition using a dynamic residual network with attention mechanism based on neurophysiological signals.
    Ji Z; Tang J; Wang Q; Xie X; Liu J; Yin Z
    Comput Methods Programs Biomed; 2023 Mar; 230():107352. PubMed ID: 36682107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subject-Specific Cognitive Workload Classification Using EEG-Based Functional Connectivity and Deep Learning.
    Gupta A; Siddhad G; Pandey V; Roy PP; Kim BG
    Sensors (Basel); 2021 Oct; 21(20):. PubMed ID: 34695921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning Spatial-Spectral-Temporal EEG Representations with Deep Attentive-Recurrent-Convolutional Neural Networks for Pain Intensity Assessment.
    Wu F; Mai W; Tang Y; Liu Q; Chen J; Guo Z
    Neuroscience; 2022 Jan; 481():144-155. PubMed ID: 34843893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of mental workload with EEG analysis by using effective connectivity and a hybrid model of CNN and LSTM.
    Safari M; Shalbaf R; Bagherzadeh S; Shalbaf A
    Comput Methods Biomech Biomed Engin; 2024 Jul; ():1-15. PubMed ID: 39086252
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using electroencephalography to analyse drivers' different cognitive workload characteristics based on on-road experiment.
    Liu R; Qi S; Hao S; Lian G; Luo Y
    Front Psychol; 2023; 14():1107176. PubMed ID: 37168425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Filter bank common spatial patterns in mental workload estimation.
    Arvaneh M; Umilta A; Robertson IH
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4749-52. PubMed ID: 26737355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Neural Network for EEG Signal-Based Subject-Independent Imaginary Mental Task Classification.
    Siddiqui F; Mohammad A; Alam MA; Naaz S; Agarwal P; Sohail SS; Madsen DØ
    Diagnostics (Basel); 2023 Feb; 13(4):. PubMed ID: 36832128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Feature Selection Model based on EEG Signals for Assessing the Cognitive Workload in Drivers.
    Becerra-Sánchez P; Reyes-Munoz A; Guerrero-Ibañez A
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33080866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling Cognitive Load as a Self-Supervised Brain Rate with Electroencephalography and Deep Learning.
    Longo L
    Brain Sci; 2022 Oct; 12(10):. PubMed ID: 36291349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feature Weight Driven Interactive Mutual Information Modeling for Heterogeneous Bio-Signal Fusion to Estimate Mental Workload.
    Zhang P; Wang X; Chen J; You W
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29023364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Filter Bank Regularized Common Spatial Pattern Ensemble for Small Sample Motor Imagery Classification.
    Park SH; Lee D; Lee SG
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):498-505. PubMed ID: 28961119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation.
    Lee H; Hong H; Kim J; Jung DC
    Med Phys; 2018 Apr; 45(4):1550-1561. PubMed ID: 29474742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals.
    Zarei R; He J; Siuly S; Zhang Y
    Comput Methods Programs Biomed; 2017 Jul; 146():47-57. PubMed ID: 28688489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subject-based feature extraction by using fisher WPD-CSP in brain-computer interfaces.
    Yang B; Li H; Wang Q; Zhang Y
    Comput Methods Programs Biomed; 2016 Jun; 129():21-8. PubMed ID: 27084317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing cognitive mental workload via EEG signals and an ensemble deep learning classifier based on denoising autoencoders.
    Yang S; Yin Z; Wang Y; Zhang W; Wang Y; Zhang J
    Comput Biol Med; 2019 Jun; 109():159-170. PubMed ID: 31059900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A neural network-based optimal spatial filter design method for motor imagery classification.
    Yuksel A; Olmez T
    PLoS One; 2015; 10(5):e0125039. PubMed ID: 25933101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.