These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 30781727)

  • 1. Genome-Wide Identification and Analysis of High-Copy-Number LTR Retrotransposons in Asian Pears.
    Jiang S; Wang X; Shi C; Luo J
    Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30781727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and characterization of putative functional long terminal repeat retrotransposons in the Pyrus genome.
    Jiang S; Cai D; Sun Y; Teng Y
    Mob DNA; 2016; 7():1. PubMed ID: 26779288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of retrotransposons and assessment of genetic variability based on developed retrotransposon-based insertion polymorphism (RBIP) markers in Pyrus L.
    Jiang S; Zong Y; Yue X; Postman J; Teng Y; Cai D
    Mol Genet Genomics; 2015 Feb; 290(1):225-37. PubMed ID: 25216935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide Annotation and Comparative Analysis of Long Terminal Repeat Retrotransposons between Pear Species of P. bretschneideri and P. Communis.
    Yin H; Du J; Wu J; Wei S; Xu Y; Tao S; Wu J; Zhang S
    Sci Rep; 2015 Dec; 5():17644. PubMed ID: 26631625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primitive Genepools of Asian Pears and Their Complex Hybrid Origins Inferred from Fluorescent Sequence-Specific Amplification Polymorphism (SSAP) Markers Based on LTR Retrotransposons.
    Jiang S; Zheng X; Yu P; Yue X; Ahmed M; Cai D; Teng Y
    PLoS One; 2016; 11(2):e0149192. PubMed ID: 26871452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative genomic analysis reveals multiple long terminal repeats, lineage-specific amplification, and frequent interelement recombination for Cassandra retrotransposon in pear (Pyrus bretschneideri Rehd.).
    Yin H; Du J; Li L; Jin C; Fan L; Li M; Wu J; Zhang S
    Genome Biol Evol; 2014 Jun; 6(6):1423-36. PubMed ID: 24899073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diverse and mobile: eccDNA-based identification of carrot low-copy-number LTR retrotransposons active in callus cultures.
    Kwolek K; Kędzierska P; Hankiewicz M; Mirouze M; Panaud O; Grzebelus D; Macko-Podgórni A
    Plant J; 2022 Jun; 110(6):1811-1828. PubMed ID: 35426957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lineage-specific amplification and epigenetic regulation of LTR-retrotransposons contribute to the structure, evolution, and function of Fabaceae species.
    Yang LL; Zhang XY; Wang LY; Li YG; Li XT; Yang Y; Su Q; Chen N; Zhang YL; Li N; Deng CL; Li SF; Gao WJ
    BMC Genomics; 2023 Jul; 24(1):423. PubMed ID: 37501164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences.
    Gao L; McCarthy EM; Ganko EW; McDonald JF
    BMC Genomics; 2004 Mar; 5(1):18. PubMed ID: 15040813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of molecular markers based on LTR retrotransposon in the Cleistogenes songorica genome.
    Ma T; Wei X; Zhang Y; Li J; Wu F; Yan Q; Yan Z; Zhang Z; Kanzana G; Zhao Y; Yang Y; Zhang J
    J Appl Genet; 2022 Feb; 63(1):61-72. PubMed ID: 34554437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comprehensive annotation dataset of intact LTR retrotransposons of 300 plant genomes.
    Zhou SS; Yan XM; Zhang KF; Liu H; Xu J; Nie S; Jia KH; Jiao SQ; Zhao W; Zhao YJ; Porth I; El Kassaby YA; Wang T; Mao JF
    Sci Data; 2021 Jul; 8(1):174. PubMed ID: 34267227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of LTR-Retrotransposons on Genome Structure, Evolution, and Function in Curcurbitaceae Species.
    Li SF; She HB; Yang LL; Lan LN; Zhang XY; Wang LY; Zhang YL; Li N; Deng CL; Qian W; Gao WJ
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary dynamics of retrotransposons following autopolyploidy in the Buckler Mustard species complex.
    Bardil A; Tayalé A; Parisod C
    Plant J; 2015 May; 82(4):621-31. PubMed ID: 25823965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid and Recent Evolution of LTR Retrotransposons Drives Rice Genome Evolution During the Speciation of AA-Genome
    Zhang QJ; Gao LZ
    G3 (Bethesda); 2017 Jun; 7(6):1875-1885. PubMed ID: 28413161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Karyotype and LTR-RTs analysis provide insights into oak genomic evolution.
    Cao RB; Chen R; Liao KX; Li H; Xu GB; Jiang XL
    BMC Genomics; 2024 Apr; 25(1):328. PubMed ID: 38566015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of genome-wide long terminal repeat retrotransposons provide an insight into elucidating the trait evolution of five Rhododendron species.
    Wen S; Zhao H; Qiao G; Shen X
    Plant Biol (Stuttg); 2023 Aug; 25(5):813-828. PubMed ID: 37128942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Horizontal transfers of LTR retrotransposons in seven species of Rosales.
    Hou F; Ma B; Xin Y; Kuang L; He N
    Genome; 2018 Aug; 61(8):587-594. PubMed ID: 29958091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide characterization of long terminal repeat retrotransposons provides insights into trait evolution of four cucurbit species.
    Liu HN; Pei MS; Ampomah-Dwamena C; He GQ; Wei TL; Shi QF; Yu YH; Guo DL
    Funct Integr Genomics; 2023 Jul; 23(3):218. PubMed ID: 37393305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co-evolution of plant LTR-retrotransposons and their host genomes.
    Zhao M; Ma J
    Protein Cell; 2013 Jul; 4(7):493-501. PubMed ID: 23794032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transposable element discovery and characterization of LTR-retrotransposon evolutionary lineages in the tropical fruit species Passiflora edulis.
    da Costa ZP; Cauz-Santos LA; Ragagnin GT; Van Sluys MA; Dornelas MC; Berges H; de Mello Varani A; Vieira MLC
    Mol Biol Rep; 2019 Dec; 46(6):6117-6133. PubMed ID: 31549373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.