These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 30781944)

  • 1. An Artificial Biosynthetic Pathway for 2-Amino-1,3-Propanediol Production Using Metabolically Engineered Escherichia coli.
    Luo Y; Zhao Q; Liu Q; Feng Y
    ACS Synth Biol; 2019 Mar; 8(3):548-556. PubMed ID: 30781944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of Phosphoserine Aminotransferase Increases the Conversion of l-Homoserine to 4-Hydroxy-2-ketobutyrate in a Glycerol-Independent Pathway of 1,3-Propanediol Production from Glucose.
    Zhang Y; Ma C; Dischert W; Soucaille P; Zeng AP
    Biotechnol J; 2019 Sep; 14(9):e1900003. PubMed ID: 30925016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the production of isoprene and 1,3-propanediol by metabolically engineered Escherichia coli through recycling redox cofactor between the dual pathways.
    Guo J; Cao Y; Liu H; Zhang R; Xian M; Liu H
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2597-2608. PubMed ID: 30719552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Escherichia coli for de novo production of 3-phenylpropanol via retrobiosynthesis approach.
    Liu Z; Zhang X; Lei D; Qiao B; Zhao GR
    Microb Cell Fact; 2021 Jun; 20(1):121. PubMed ID: 34176467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic Engineering of Escherichia coli for Efficient Production of 2-Pyrone-4,6-dicarboxylic Acid from Glucose.
    Luo ZW; Kim WJ; Lee SY
    ACS Synth Biol; 2018 Sep; 7(9):2296-2307. PubMed ID: 30096230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of 1,3-Propanediol via a New Pathway from Glucose in
    Li M; Zhang Y; Li J; Tan T
    ACS Synth Biol; 2023 Jul; 12(7):2083-2093. PubMed ID: 37316976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Construction of stress-induced metabolic pathway from glucose to 1,3-propanediol in Escherichia coli.
    Liang Q; Zhang H; Li S; Qi Q
    Appl Microbiol Biotechnol; 2011 Jan; 89(1):57-62. PubMed ID: 20803136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotechnological conversion of glycerol to 2-amino-1,3-propanediol (serinol) in recombinant Escherichia coli.
    Andreessen B; Steinbüchel A
    Appl Microbiol Biotechnol; 2012 Jan; 93(1):357-65. PubMed ID: 21706173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic Engineering of a Homoserine-Derived Non-Natural Pathway for the De Novo Production of 1,3-Propanediol from Glucose.
    Zhong W; Zhang Y; Wu W; Liu D; Chen Z
    ACS Synth Biol; 2019 Mar; 8(3):587-595. PubMed ID: 30802034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of 1,3-propanediol by Clostridium beijerinckii DSM 791 from crude glycerol and corn steep liquor: Process optimization and metabolic engineering.
    Wischral D; Zhang J; Cheng C; Lin M; De Souza LMG; Pessoa FLP; Pereira N; Yang ST
    Bioresour Technol; 2016 Jul; 212():100-110. PubMed ID: 27085150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational design and metabolic analysis of Escherichia coli for effective production of L-tryptophan at high concentration.
    Chen L; Zeng AP
    Appl Microbiol Biotechnol; 2017 Jan; 101(2):559-568. PubMed ID: 27599980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico and in vivo stability analysis of a heterologous biosynthetic pathway for 1,4-butanediol production in metabolically engineered E. coli.
    Miklóssy I; Bodor Z; Sinkler R; Orbán KC; Lányi S; Albert B
    J Biomol Struct Dyn; 2017 Jul; 35(9):1874-1889. PubMed ID: 27492654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions.
    Hirokawa Y; Maki Y; Hanai T
    Metab Eng; 2017 Jan; 39():192-199. PubMed ID: 27998670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A.
    Zhou L; Ding Q; Jiang GZ; Liu ZN; Wang HY; Zhao GR
    Microb Cell Fact; 2017 May; 16(1):84. PubMed ID: 28511681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic engineering of Escherichia coli for the production of phenol from glucose.
    Kim B; Park H; Na D; Lee SY
    Biotechnol J; 2014 May; 9(5):621-9. PubMed ID: 24115680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering a non-oxidative glycolysis pathway in escherichia coli for high-level citramalate production.
    Wang T; Ding L; Luo H; Huang H; Su X; Bai Y; Tu T; Wang Y; Qin X; Zhang H; Wang Y; Yao B; Zhang J; Wang X
    Microb Cell Fact; 2024 Aug; 23(1):233. PubMed ID: 39174991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Novel Biosynthetic Pathway for the Production of Acrylic Acid through β-Alanine Route in
    Ko YS; Kim JW; Chae TU; Song CW; Lee SY
    ACS Synth Biol; 2020 May; 9(5):1150-1159. PubMed ID: 32243749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Efficient Production of l-Histidine from Glucose by Metabolically Engineered
    Wu H; Tian D; Fan X; Fan W; Zhang Y; Jiang S; Wen C; Ma Q; Chen N; Xie X
    ACS Synth Biol; 2020 Jul; 9(7):1813-1822. PubMed ID: 32470291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic Engineering of
    Cen X; Liu Y; Chen B; Liu D; Chen Z
    ACS Synth Biol; 2021 Jan; 10(1):192-203. PubMed ID: 33301309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering of Escherichia coli for 1,3-propanediol biosynthesis from glycerol.
    Yang B; Liang S; Liu H; Liu J; Cui Z; Wen J
    Bioresour Technol; 2018 Nov; 267():599-607. PubMed ID: 30056370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.