These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 30782661)

  • 1. Alternative Splicing in Apicomplexan Parasites.
    Yeoh LM; Lee VV; McFadden GI; Ralph SA
    mBio; 2019 Feb; 10(1):. PubMed ID: 30782661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative splicing mechanisms orchestrating post-transcriptional gene expression: intron retention and the intron-rich genome of apicomplexan parasites.
    Lunghi M; Spano F; Magini A; Emiliani C; Carruthers VB; Di Cristina M
    Curr Genet; 2016 Feb; 62(1):31-8. PubMed ID: 26194054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogeny and evolution of apicoplasts and apicomplexan parasites.
    Arisue N; Hashimoto T
    Parasitol Int; 2015 Jun; 64(3):254-9. PubMed ID: 25451217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Nanopore Sequencing of mRNA Reveals Landscape of Transcript Isoforms in Apicomplexan Parasites.
    Lee VV; Judd LM; Jex AR; Holt KE; Tonkin CJ; Ralph SA
    mSystems; 2021 Mar; 6(2):. PubMed ID: 33688018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A serine-arginine-rich (SR) splicing factor modulates alternative splicing of over a thousand genes in Toxoplasma gondii.
    Yeoh LM; Goodman CD; Hall NE; van Dooren GG; McFadden GI; Ralph SA
    Nucleic Acids Res; 2015 May; 43(9):4661-75. PubMed ID: 25870410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative genome analysis reveals a conserved family of actin-like proteins in apicomplexan parasites.
    Gordon JL; Sibley LD
    BMC Genomics; 2005 Dec; 6():179. PubMed ID: 16343347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plastids are widespread and ancient in parasites of the phylum Apicomplexa.
    Lang-Unnasch N; Reith ME; Munholland J; Barta JR
    Int J Parasitol; 1998 Nov; 28(11):1743-54. PubMed ID: 9846612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative genomic and phylogenetic analyses of calcium ATPases and calcium-regulated proteins in the apicomplexa.
    Nagamune K; Sibley LD
    Mol Biol Evol; 2006 Aug; 23(8):1613-27. PubMed ID: 16751258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repeated secondary loss of adaptin complex genes in the Apicomplexa.
    Nevin WD; Dacks JB
    Parasitol Int; 2009 Mar; 58(1):86-94. PubMed ID: 19146987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel insights on ENTH domain-containing proteins in apicomplexan parasites.
    Kibria KM; Hossain MU; Oany AR; Ahmad SA
    Parasitol Res; 2016 Jun; 115(6):2191-202. PubMed ID: 26922178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noncoding RNAs in Apicomplexan Parasites: An Update.
    Li Y; Baptista RP; Kissinger JC
    Trends Parasitol; 2020 Oct; 36(10):835-849. PubMed ID: 32828659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New and emerging uses of CRISPR/Cas9 to genetically manipulate apicomplexan parasites.
    Di Cristina M; Carruthers VB
    Parasitology; 2018 Aug; 145(9):1119-1126. PubMed ID: 29463318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The serine/threonine phosphatases of apicomplexan parasites.
    Yang C; Arrizabalaga G
    Mol Microbiol; 2017 Oct; 106(1):1-21. PubMed ID: 28556455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcending Dimensions in Apicomplexan Research: from Two-Dimensional to Three-Dimensional
    Ramírez-Flores CJ; Tibabuzo Perdomo AM; Gallego-López GM; Knoll LJ
    Microbiol Mol Biol Rev; 2022 Jun; 86(2):e0002522. PubMed ID: 35412359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diversity of extracellular proteins during the transition from the 'proto-apicomplexan' alveolates to the apicomplexan obligate parasites.
    Templeton TJ; Pain A
    Parasitology; 2016 Jan; 143(1):1-17. PubMed ID: 26585326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular approaches to diversity of populations of apicomplexan parasites.
    Beck HP; Blake D; Dardé ML; Felger I; Pedraza-Díaz S; Regidor-Cerrillo J; Gómez-Bautista M; Ortega-Mora LM; Putignani L; Shiels B; Tait A; Weir W
    Int J Parasitol; 2009 Jan; 39(2):175-89. PubMed ID: 18983997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcript maturation in apicomplexan parasites.
    Suvorova ES; White MW
    Curr Opin Microbiol; 2014 Aug; 20():82-7. PubMed ID: 24934558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why the -omic future of Apicomplexa should include gregarines.
    Boisard J; Florent I
    Biol Cell; 2020 Jun; 112(6):173-185. PubMed ID: 32176937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apicomplexan apicortins possess a long disordered N-terminal extension.
    Orosz F
    Infect Genet Evol; 2011 Jul; 11(5):1037-44. PubMed ID: 21463710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A genome-wide analysis of coatomer protein (COP) subunits of apicomplexan parasites and their evolutionary relationships.
    Kibria KMK; Ferdous J; Sardar R; Panda A; Gupta D; Mohmmed A; Malhotra P
    BMC Genomics; 2019 Jan; 20(1):98. PubMed ID: 30704415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.