BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30782779)

  • 1. Novel tool to quantify cell wall porosity relates wall structure to cell growth and drug uptake.
    Liu X; Li J; Zhao H; Liu B; Günther-Pomorski T; Chen S; Liesche J
    J Cell Biol; 2019 Apr; 218(4):1408-1421. PubMed ID: 30782779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential growth of pavement cells of Arabidopsis thaliana leaf epidermis as revealed by microbead labeling.
    Elsner J; Lipowczan M; Kwiatkowska D
    Am J Bot; 2018 Feb; 105(2):257-265. PubMed ID: 29578288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Super-resolution imaging with Pontamine Fast Scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells.
    Liesche J; Ziomkiewicz I; Schulz A
    BMC Plant Biol; 2013 Dec; 13():226. PubMed ID: 24373117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of diffusion within the cell wall in living roots of Arabidopsis thaliana.
    Kramer EM; Frazer NL; Baskin TI
    J Exp Bot; 2007; 58(11):3005-15. PubMed ID: 17728296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recycling of pyridoxine (vitamin B6) by PUP1 in Arabidopsis.
    Szydlowski N; Bürkle L; Pourcel L; Moulin M; Stolz J; Fitzpatrick TB
    Plant J; 2013 Jul; 75(1):40-52. PubMed ID: 23551747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-invasive Quantification of Cell Wall Porosity by Fluorescence Quenching Microscopy.
    Liu X; Pomorski TG; Liesche J
    Bio Protoc; 2019 Aug; 9(16):e3344. PubMed ID: 33654847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of tissue-preparation-induced callose synthesis on estimates of plasmodesma size exclusion limits.
    Radford JE; White RG
    Protoplasma; 2001; 216(1-2):47-55. PubMed ID: 11732196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Super-Resolution Fluorescence Imaging of Arabidopsis thaliana Transfer Cell Wall Ingrowths using Pseudo-Schiff Labelling Adapted for the Use of Different Dyes.
    Rae AE; Wei X; Flores-Rodriguez N; McCurdy DW; Collings DA
    Plant Cell Physiol; 2020 Oct; 61(10):1775-1787. PubMed ID: 32761075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Live cell imaging of FM4-64, a tool for tracing the endocytic pathways in Arabidopsis root cells.
    Rigal A; Doyle SM; Robert S
    Methods Mol Biol; 2015; 1242():93-103. PubMed ID: 25408447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GFP-FABD2 fusion construct allows in vivo visualization of the dynamic actin cytoskeleton in all cells of Arabidopsis seedlings.
    Voigt B; Timmers AC; Samaj J; Müller J; Baluska F; Menzel D
    Eur J Cell Biol; 2005 Jun; 84(6):595-608. PubMed ID: 16032928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasma membrane-associated SCAR complex subunits promote cortical F-actin accumulation and normal growth characteristics in Arabidopsis roots.
    Dyachok J; Shao MR; Vaughn K; Bowling A; Facette M; Djakovic S; Clark L; Smith L
    Mol Plant; 2008 Nov; 1(6):990-1006. PubMed ID: 19825598
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The glucanase-soluble mannoproteins limit cell wall porosity in Saccharomyces cerevisiae.
    de Nobel JG; Klis FM; Priem J; Munnik T; van den Ende H
    Yeast; 1990; 6(6):491-9. PubMed ID: 2080666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Talking through walls: mechanisms of lateral root emergence in Arabidopsis thaliana.
    Vilches-Barro A; Maizel A
    Curr Opin Plant Biol; 2015 Feb; 23():31-8. PubMed ID: 25449724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An assay of relative cell wall porosity in Saccharomyces cerevisiae, Kluyveromyces lactis and Schizosaccharomyces pombe.
    De Nobel JG; Klis FM; Munnik T; Priem J; van den Ende H
    Yeast; 1990; 6(6):483-90. PubMed ID: 2080665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo fluorescence correlation microscopy (FCM) reveals accumulation and immobilization of Nod factors in root hair cell walls.
    Goedhart J; Hink MA; Visser AJ; Bisseling T; Gadella TW
    Plant J; 2000 Jan; 21(1):109-19. PubMed ID: 10652156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic Force Microscopy to Study Cell Wall Mechanics in Plants.
    Majda M
    Methods Mol Biol; 2021; 2200():349-369. PubMed ID: 33175387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The organization of high-affinity ammonium uptake in Arabidopsis roots depends on the spatial arrangement and biochemical properties of AMT1-type transporters.
    Yuan L; Loqué D; Kojima S; Rauch S; Ishiyama K; Inoue E; Takahashi H; von Wirén N
    Plant Cell; 2007 Aug; 19(8):2636-52. PubMed ID: 17693533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous visualization of callose deposition and plasma membrane for live-cell imaging in plants.
    Kohari M; Shibuya N; Kaku H
    Plant Cell Rep; 2020 Nov; 39(11):1517-1523. PubMed ID: 32856139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic variations in the permeability of the cell wall of Saccharomyces cerevisiae.
    De Nobel JG; Klis FM; Ram A; Van Unen H; Priem J; Munnik T; Van Den Ende H
    Yeast; 1991; 7(6):589-98. PubMed ID: 1722597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of AMT-mediated high-affinity ammonium uptake in roots of maize (Zea mays L.).
    Gu R; Duan F; An X; Zhang F; von Wirén N; Yuan L
    Plant Cell Physiol; 2013 Sep; 54(9):1515-24. PubMed ID: 23832511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.