These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 30782811)
1. Zhao Y; Liu R; Xu Y; Wang M; Zhang J; Bai M; Han C; Xiang F; Wang ZY; Mysore KS; Wen J; Zhou C Proc Natl Acad Sci U S A; 2019 Mar; 116(11):5176-5181. PubMed ID: 30782811 [TBL] [Abstract][Full Text] [Related]
2. Zhang J; Zhao Y; Liu R; Zhou C Plant Signal Behav; 2019; 14(7):1612683. PubMed ID: 31042117 [TBL] [Abstract][Full Text] [Related]
3. AGAMOUS AND TERMINAL FLOWER controls floral organ identity and inflorescence development in Medicago truncatula. Zhu B; Li H; Hou Y; Zhang P; Xia X; Wang N; Wang H; Mysore KS; Wen J; Pei Y; Niu L; Lin H J Integr Plant Biol; 2019 Aug; 61(8):917-923. PubMed ID: 30839160 [TBL] [Abstract][Full Text] [Related]
4. Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development in Medicago truncatula. Benlloch R; Roque E; Ferrándiz C; Cosson V; Caballero T; Penmetsa RV; Beltrán JP; Cañas LA; Ratet P; Madueño F Plant J; 2009 Oct; 60(1):102-11. PubMed ID: 19500303 [TBL] [Abstract][Full Text] [Related]
5. LOOSE FLOWER, a WUSCHEL-like Homeobox gene, is required for lateral fusion of floral organs in Medicago truncatula. Niu L; Lin H; Zhang F; Watira TW; Li G; Tang Y; Wen J; Ratet P; Mysore KS; Tadege M Plant J; 2015 Feb; 81(3):480-92. PubMed ID: 25492397 [TBL] [Abstract][Full Text] [Related]
6. Functional Specialization of Duplicated Zhu B; Li H; Wen J; Mysore KS; Wang X; Pei Y; Niu L; Lin H Front Plant Sci; 2018; 9():854. PubMed ID: 30108597 [TBL] [Abstract][Full Text] [Related]
7. Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in legumes. Benlloch R; d'Erfurth I; Ferrandiz C; Cosson V; Beltrán JP; Cañas LA; Kondorosi A; Madueño F; Ratet P Plant Physiol; 2006 Nov; 142(3):972-83. PubMed ID: 16963524 [TBL] [Abstract][Full Text] [Related]
8. MtSUPERMAN plays a key role in compound inflorescence and flower development in Medicago truncatula. Rodas AL; Roque E; Hamza R; Gómez-Mena C; Minguet EG; Wen J; Mysore KS; Beltrán JP; Cañas LA Plant J; 2021 Feb; 105(3):816-830. PubMed ID: 33176041 [TBL] [Abstract][Full Text] [Related]
9. NO APICAL MERISTEM (MtNAM) regulates floral organ identity and lateral organ separation in Medicago truncatula. Cheng X; Peng J; Ma J; Tang Y; Chen R; Mysore KS; Wen J New Phytol; 2012 Jul; 195(1):71-84. PubMed ID: 22530598 [TBL] [Abstract][Full Text] [Related]
10. Functional Genomics and Genetic Control of Flower and Fruit Development in Medicago truncatula: An Overview. Roque E; Gómez-Mena C; Ferrándiz C; Beltrán JP; Cañas LA Methods Mol Biol; 2018; 1822():273-290. PubMed ID: 30043310 [TBL] [Abstract][Full Text] [Related]
11. Regulation of floral patterning and organ identity by Arabidopsis ERECTA-family receptor kinase genes. Bemis SM; Lee JS; Shpak ED; Torii KU J Exp Bot; 2013 Dec; 64(17):5323-33. PubMed ID: 24006425 [TBL] [Abstract][Full Text] [Related]
12. Two euAGAMOUS genes control C-function in Medicago truncatula. Serwatowska J; Roque E; Gómez-Mena C; Constantin GD; Wen J; Mysore KS; Lund OS; Johansen E; Beltrán JP; Cañas LA PLoS One; 2014; 9(8):e103770. PubMed ID: 25105497 [TBL] [Abstract][Full Text] [Related]
13. Wrinkled petals and stamens 1, is required for the morphogenesis of petals and stamens in Lotus japonicus. Chen JH; Pang JL; Wang LL; Luo YH; Li X; Cao XL; Lin K; Ma W; Hu XH; Luo D Cell Res; 2006 May; 16(5):499-506. PubMed ID: 16699545 [TBL] [Abstract][Full Text] [Related]
14. MtFDa is essential for flowering control and inflorescence development in Medicago truncatula. Zhang P; Liu H; Mysore KS; Wen J; Meng Y; Lin H; Niu L J Plant Physiol; 2021 May; 260():153412. PubMed ID: 33845341 [TBL] [Abstract][Full Text] [Related]
16. The CRC orthologue from Pisum sativum shows conserved functions in carpel morphogenesis and vascular development. Fourquin C; Primo A; Martínez-Fernández I; Huet-Trujillo E; Ferrándiz C Ann Bot; 2014 Nov; 114(7):1535-44. PubMed ID: 24989787 [TBL] [Abstract][Full Text] [Related]
17. Dissection of genetic regulation of compound inflorescence development in Cheng X; Li G; Tang Y; Wen J Development; 2018 Feb; 145(3):. PubMed ID: 29361570 [TBL] [Abstract][Full Text] [Related]
18. The 3-ketoacyl-CoA synthase WFL is involved in lateral organ development and cuticular wax synthesis in Medicago truncatula. Yang T; Li Y; Liu Y; He L; Liu A; Wen J; Mysore KS; Tadege M; Chen J Plant Mol Biol; 2021 Jan; 105(1-2):193-204. PubMed ID: 33037987 [TBL] [Abstract][Full Text] [Related]
19. Functional specialization of duplicated AP3-like genes in Medicago truncatula. Roque E; Serwatowska J; Cruz Rochina M; Wen J; Mysore KS; Yenush L; Beltrán JP; Cañas LA Plant J; 2013 Feb; 73(4):663-75. PubMed ID: 23146152 [TBL] [Abstract][Full Text] [Related]
20. DEFORMED FLORAL ORGAN1 (DFO1) regulates floral organ identity by epigenetically repressing the expression of OsMADS58 in rice (Oryza sativa). Zheng M; Wang Y; Wang Y; Wang C; Ren Y; Lv J; Peng C; Wu T; Liu K; Zhao S; Liu X; Guo X; Jiang L; Terzaghi W; Wan J New Phytol; 2015 Jun; 206(4):1476-90. PubMed ID: 25675970 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]