These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30783887)

  • 1. Finite difference transmission line model for the design of safe multi-section cables in MRI.
    Missoffe A; Barbier T; Felblinger J
    MAGMA; 2019 Aug; 32(4):449-459. PubMed ID: 30783887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental setup for transfer function measurement to assess RF heating of medical leads in MRI: Validation in the case of a single wire.
    Missoffe A; Aissani S
    Magn Reson Med; 2018 Mar; 79(3):1766-1772. PubMed ID: 28585224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupled transfer function model for the evaluation of implanted cables safety in MRI.
    Kabil J; Felblinger J; Vuissoz PA; Missoffe A
    Magn Reson Med; 2020 Aug; 84(2):991-999. PubMed ID: 31960445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radiofrequency heating effects around resonant lengths of wire in MRI.
    Pictet J; Meuli R; Wicky S; van der Klink JJ
    Phys Med Biol; 2002 Aug; 47(16):2973-85. PubMed ID: 12222860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite volume analysis of temperature effects induced by active MRI implants: 2. Defects on active MRI implants causing hot spots.
    Busch MH; Vollmann W; Grönemeyer DH
    Biomed Eng Online; 2006 May; 5():35. PubMed ID: 16729878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallel transmit excitation at 1.5 T based on the minimization of a driving function for device heating.
    Gudino N; Sonmez M; Yao Z; Baig T; Nielles-Vallespin S; Faranesh AZ; Lederman RJ; Martens M; Balaban RS; Hansen MS; Griswold MA
    Med Phys; 2015 Jan; 42(1):359-71. PubMed ID: 25563276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurements and simulation of RF heating of implanted stereo-electroencephalography electrodes during MR scans.
    Bhusal B; Bhattacharyya P; Baig T; Jones S; Martens M
    Magn Reson Med; 2018 Oct; 80(4):1676-1685. PubMed ID: 29468721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RF-induced heating in tissue near bilateral DBS implants during MRI at 1.5 T and 3T: The role of surgical lead management.
    Golestanirad L; Kirsch J; Bonmassar G; Downs S; Elahi B; Martin A; Iacono MI; Angelone LM; Keil B; Wald LL; Pilitsis J
    Neuroimage; 2019 Jan; 184():566-576. PubMed ID: 30243973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reducing RF-related heating of cardiac pacemaker leads in MRI: implementation and experimental verification of practical design changes.
    Nordbeck P; Fidler F; Friedrich MT; Weiss I; Warmuth M; Gensler D; Herold V; Geistert W; Jakob PM; Ertl G; Ritter O; Ladd ME; Bauer WR; Quick HH
    Magn Reson Med; 2012 Dec; 68(6):1963-72. PubMed ID: 22383393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of Parallel Radiofrequency Transmission for the Reduction of Heating in Long Conductive Leads in 3 Tesla Magnetic Resonance Imaging.
    McElcheran CE; Yang B; Anderson KJ; Golenstani-Rad L; Graham SJ
    PLoS One; 2015; 10(8):e0134379. PubMed ID: 26237218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational and experimental investigation of RF-induced heating for multiple orthopedic implants.
    Guo R; Zheng J; Wang Y; Zeng Q; Wang Q; Yang R; Kainz W; Chen J
    Magn Reson Med; 2019 Nov; 82(5):1848-1858. PubMed ID: 31183897
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of electrodes and implantable pulse generator cases for the analysis of implant tip heating under MR imaging.
    Acikel V; Uslubas A; Atalar E
    Med Phys; 2015 Jul; 42(7):3922-31. PubMed ID: 26133593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of MRI-induced heating of an implanted medical lead wire with an electric field transfer function.
    Park SM; Kamondetdacha R; Nyenhuis JA
    J Magn Reson Imaging; 2007 Nov; 26(5):1278-85. PubMed ID: 17969143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Energy Harvesting Circuit for RF Surface Coils in the MRI System.
    Ganti A; Wynn T; Lin J
    IEEE Trans Biomed Circuits Syst; 2021 Aug; 15(4):791-801. PubMed ID: 34383652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pacemaker lead tip heating in abandoned and pacemaker-attached leads at 1.5 Tesla MRI.
    Langman DA; Goldberg IB; Finn JP; Ennis DB
    J Magn Reson Imaging; 2011 Feb; 33(2):426-31. PubMed ID: 21274985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RF Heating of Gold Cup and Conductive Plastic Electrodes during Simultaneous EEG and MRI.
    Balasubramanian M; Wells WM; Ives JR; Britz P; Mulkern RV; Orbach DB
    Neurodiagn J; 2017; 57(1):69-83. PubMed ID: 28436813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Safety of externally stimulated intracranial electrodes during functional MRI at 1.5T.
    Bhattacharyya PK; Mullin J; Lee BS; Gonzalez-Martinez JA; Jones SE
    Magn Reson Imaging; 2017 May; 38():182-188. PubMed ID: 28104438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing passive MRI-safe implantable conducting leads with electrodes.
    Bottomley PA; Kumar A; Edelstein WA; Allen JM; Karmarkar PV
    Med Phys; 2010 Jul; 37(7):3828-43. PubMed ID: 20831091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of resonant RF heating in intravascular catheters using coaxial chokes.
    Ladd ME; Quick HH
    Magn Reson Med; 2000 Apr; 43(4):615-9. PubMed ID: 10748440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple design changes to wires to substantially reduce MRI-induced heating at 1.5 T: implications for implanted leads.
    Gray RW; Bibens WT; Shellock FG
    Magn Reson Imaging; 2005 Oct; 23(8):887-91. PubMed ID: 16275428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.