These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 30784405)

  • 1. Enzyme colocalization in protein-based hydrogels.
    Lancaster L; Bulutoglu B; Banta S; Wheeldon I
    Methods Enzymol; 2019; 617():265-285. PubMed ID: 30784405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic biomaterials: engineering organophosphate hydrolase to form self-assembling enzymatic hydrogels.
    Lu HD; Wheeldon IR; Banta S
    Protein Eng Des Sel; 2010 Jul; 23(7):559-66. PubMed ID: 20457694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-Linking Approaches to Tuning the Mechanical Properties of Peptide π-Electron Hydrogels.
    Liyanage W; Ardoña HA; Mao HQ; Tovar JD
    Bioconjug Chem; 2017 Mar; 28(3):751-759. PubMed ID: 28292179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular and macro-scale analysis of enzyme-crosslinked silk hydrogels for rational biomaterial design.
    McGill M; Coburn JM; Partlow BP; Mu X; Kaplan DL
    Acta Biomater; 2017 Nov; 63():76-84. PubMed ID: 28919509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical gelling of hydrogels-based biological macromolecules for tissue engineering: Photo- and enzymatic-crosslinking methods.
    Nezhad-Mokhtari P; Ghorbani M; Roshangar L; Soleimani Rad J
    Int J Biol Macromol; 2019 Oct; 139():760-772. PubMed ID: 31400425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioactive proteinaceous hydrogels from designed bifunctional building blocks.
    Wheeldon IR; Barton SC; Banta S
    Biomacromolecules; 2007 Oct; 8(10):2990-4. PubMed ID: 17887795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sortase A as a cross-linking enzyme in tissue engineering.
    Broguiere N; Formica FA; Barreto G; Zenobi-Wong M
    Acta Biomater; 2018 Sep; 77():182-190. PubMed ID: 30006315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Injectable hydrogel systems crosslinked by horseradish peroxidase.
    Lee F; Bae KH; Kurisawa M
    Biomed Mater; 2015 Dec; 11(1):014101. PubMed ID: 26694014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme-Laden Bioactive Hydrogel for Biocatalytic Monitoring and Regulation.
    Wang X; Wang Q
    Acc Chem Res; 2021 Mar; 54(5):1274-1287. PubMed ID: 33570397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Horseradish peroxidase-catalysed in situ-forming hydrogels for tissue-engineering applications.
    Bae JW; Choi JH; Lee Y; Park KD
    J Tissue Eng Regen Med; 2015 Nov; 9(11):1225-32. PubMed ID: 24916126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photo-cross-linking approach to engineering small tyrosine-containing peptide hydrogels with enhanced mechanical stability.
    Ding Y; Li Y; Qin M; Cao Y; Wang W
    Langmuir; 2013 Oct; 29(43):13299-306. PubMed ID: 24090141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current Progress in Cross-Linked Peptide Self-Assemblies.
    Uchida N; Muraoka T
    Int J Mol Sci; 2020 Oct; 21(20):. PubMed ID: 33066439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of Local Heterogeneity in Mechanical Properties of Nanostructured Hydrogel Networks.
    Meng Z; Thakur T; Chitrakar C; Jaiswal MK; Gaharwar AK; Yakovlev VV
    ACS Nano; 2017 Aug; 11(8):7690-7696. PubMed ID: 28745508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biofabrication of genipin-crosslinked peptide hydrogels and their use in the controlled delivery of naproxen.
    Chronopoulou L; Toumia Y; Cerroni B; Pandolfi D; Paradossi G; Palocci C
    N Biotechnol; 2017 Jul; 37(Pt A):138-143. PubMed ID: 27167857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembling peptides cross-linked with genipin: resilient hydrogels and self-standing electrospun scaffolds for tissue engineering applications.
    Pugliese R; Maleki M; Zuckermann RN; Gelain F
    Biomater Sci; 2018 Dec; 7(1):76-91. PubMed ID: 30475373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances of self-assembling peptide-based hydrogels for biomedical applications.
    Li J; Xing R; Bai S; Yan X
    Soft Matter; 2019 Feb; 15(8):1704-1715. PubMed ID: 30724947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Controlling the kinetics of thiol-maleimide Michael-type addition gelation kinetics for the generation of homogenous poly(ethylene glycol) hydrogels.
    Darling NJ; Hung YS; Sharma S; Segura T
    Biomaterials; 2016 Sep; 101():199-206. PubMed ID: 27289380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating DNA hydrogels as a new biomaterial for enzyme immobilization in biobatteries.
    Van Nguyen K; Minteer SD
    Chem Commun (Camb); 2015 Aug; 51(66):13071-3. PubMed ID: 26165384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomaterials from ultrasonication-induced silk fibroin-hyaluronic acid hydrogels.
    Hu X; Lu Q; Sun L; Cebe P; Wang X; Zhang X; Kaplan DL
    Biomacromolecules; 2010 Nov; 11(11):3178-88. PubMed ID: 20942397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanocubes embedded biocompatible hybrid hydrogels for electrochemical detection of H
    Manickam P; Vashist A; Madhu S; Sadasivam M; Sakthivel A; Kaushik A; Nair M
    Bioelectrochemistry; 2020 Feb; 131():107373. PubMed ID: 31525638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.