These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

650 related articles for article (PubMed ID: 30784425)

  • 1. Melanoma lesion detection and segmentation using deep region based convolutional neural network and fuzzy C-means clustering.
    Nida N; Irtaza A; Javed A; Yousaf MH; Mahmood MT
    Int J Med Inform; 2019 Apr; 124():37-48. PubMed ID: 30784425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging.
    Tang P; Liang Q; Yan X; Xiang S; Sun W; Zhang D; Coppola G
    Comput Methods Programs Biomed; 2019 Sep; 178():289-301. PubMed ID: 31416556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skin cancer detection from dermoscopic images using deep learning and fuzzy k-means clustering.
    Nawaz M; Mehmood Z; Nazir T; Naqvi RA; Rehman A; Iqbal M; Saba T
    Microsc Res Tech; 2022 Jan; 85(1):339-351. PubMed ID: 34448519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks.
    Al-Masni MA; Al-Antari MA; Choi MT; Han SM; Kim TS
    Comput Methods Programs Biomed; 2018 Aug; 162():221-231. PubMed ID: 29903489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dermoscopic Image Segmentation via Multistage Fully Convolutional Networks.
    Bi L; Kim J; Ahn E; Kumar A; Fulham M; Feng D
    IEEE Trans Biomed Eng; 2017 Sep; 64(9):2065-2074. PubMed ID: 28600236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Segmentation of skin lesions in dermoscopy images using fuzzy classification of pixels and histogram thresholding.
    Garcia-Arroyo JL; Garcia-Zapirain B
    Comput Methods Programs Biomed; 2019 Jan; 168():11-19. PubMed ID: 30527129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep Learning Approaches Towards Skin Lesion Segmentation and Classification from Dermoscopic Images - A Review.
    Baig R; Bibi M; Hamid A; Kausar S; Khalid S
    Curr Med Imaging; 2020; 16(5):513-533. PubMed ID: 32484086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic lesion segmentation using atrous convolutional deep neural networks in dermoscopic skin cancer images.
    Kaur R; GholamHosseini H; Sinha R; Lindén M
    BMC Med Imaging; 2022 May; 22(1):103. PubMed ID: 35644612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification.
    Al-Masni MA; Kim DH; Kim TS
    Comput Methods Programs Biomed; 2020 Jul; 190():105351. PubMed ID: 32028084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skin lesion classification with ensembles of deep convolutional neural networks.
    Harangi B
    J Biomed Inform; 2018 Oct; 86():25-32. PubMed ID: 30103029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Digital hair segmentation using hybrid convolutional and recurrent neural networks architecture.
    Attia M; Hossny M; Zhou H; Nahavandi S; Asadi H; Yazdabadi A
    Comput Methods Programs Biomed; 2019 Aug; 177():17-30. PubMed ID: 31319945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic Skin Lesion Segmentation Using Deep Fully Convolutional Networks With Jaccard Distance.
    Yuan Y; Chao M; Lo YC
    IEEE Trans Med Imaging; 2017 Sep; 36(9):1876-1886. PubMed ID: 28436853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melanoma diagnosis using deep learning techniques on dermatoscopic images.
    Jojoa Acosta MF; Caballero Tovar LY; Garcia-Zapirain MB; Percybrooks WS
    BMC Med Imaging; 2021 Jan; 21(1):6. PubMed ID: 33407213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Melanoma segmentation using deep learning with test-time augmentations and conditional random fields.
    Ashraf H; Waris A; Ghafoor MF; Gilani SO; Niazi IK
    Sci Rep; 2022 Mar; 12(1):3948. PubMed ID: 35273282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skin Lesion Segmentation from Dermoscopic Images Using Convolutional Neural Network.
    Zafar K; Gilani SO; Waris A; Ahmed A; Jamil M; Khan MN; Sohail Kashif A
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Approaches for Diagnosing Melanoma Skin Lesions Through Supervised and Deep Learning Algorithms.
    Premaladha J; Ravichandran KS
    J Med Syst; 2016 Apr; 40(4):96. PubMed ID: 26872778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks.
    Yu L; Chen H; Dou Q; Qin J; Heng PA
    IEEE Trans Med Imaging; 2017 Apr; 36(4):994-1004. PubMed ID: 28026754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LAMA: Lesion-Aware Mixup Augmentation for Skin Lesion Segmentation.
    Lama N; Stanley RJ; Lama B; Maurya A; Nambisan A; Hagerty J; Phan T; Van Stoecker W
    J Imaging Inform Med; 2024 Aug; 37(4):1812-1823. PubMed ID: 38409610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning Based Skin Lesion Segmentation and Classification of Melanoma Using Support Vector Machine (SVM).
    R D S; A S
    Asian Pac J Cancer Prev; 2019 May; 20(5):1555-1561. PubMed ID: 31128062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dense pooling layers in fully convolutional network for skin lesion segmentation.
    Nasr-Esfahani E; Rafiei S; Jafari MH; Karimi N; Wrobel JS; Samavi S; Reza Soroushmehr SM
    Comput Med Imaging Graph; 2019 Dec; 78():101658. PubMed ID: 31634739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.