BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 30784448)

  • 1. Investigating the coagulation of non-proteinaceous algal organic matter: Optimizing coagulation performance and identification of removal mechanisms.
    Naceradska J; Novotna K; Cermakova L; Cajthaml T; Pivokonsky M
    J Environ Sci (China); 2019 May; 79():25-34. PubMed ID: 30784448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of coagulation pretreatment of produced water from natural gas well by polyaluminium chloride and polyferric sulphate coagulants.
    Zhai J; Huang Z; Rahaman MH; Li Y; Mei L; Ma H; Hu X; Xiao H; Luo Z; Wang K
    Environ Technol; 2017 May; 38(10):1200-1210. PubMed ID: 27460889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of arsenic and natural organic matter from groundwater using ferric and alum salts: a case study of central Banat region (Serbia).
    Tubić A; Agbaba J; Dalmacija B; Ivancev-Tumbas I; Dalmacija M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(3):363-9. PubMed ID: 20390878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of ozonation on natural organic matter removal by alum coagulation.
    Bose P; Reckhow DA
    Water Res; 2007 Apr; 41(7):1516-24. PubMed ID: 17275876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of micro-flocs of NOM coagulated by PACl, alum and polysilicate-iron in terms of molecular weight and floc size.
    Fusheng L; Akira Y; Yuka A
    Water Sci Technol; 2008; 57(1):83-90. PubMed ID: 18192744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using fluorescence surrogates to track algogenic dissolved organic matter (AOM) during growth and coagulation/flocculation processes of green algae.
    Ly QV; Lee MH; Hur J
    J Environ Sci (China); 2019 May; 79():311-320. PubMed ID: 30784454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissolved organic nitrogen removal during water treatment by aluminum sulfate and cationic polymer coagulation.
    Lee W; Westerhoff P
    Water Res; 2006 Dec; 40(20):3767-74. PubMed ID: 17023020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Minimizing residual aluminum concentration in treated water by tailoring properties of polyaluminum coagulants.
    Kimura M; Matsui Y; Kondo K; Ishikawa TB; Matsushita T; Shirasaki N
    Water Res; 2013 Apr; 47(6):2075-84. PubMed ID: 23422138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study on the efficiency of ozonation and coagulation-flocculation as pretreatment to activated carbon adsorption of biologically stabilized landfill leachate.
    Oloibiri V; Ufomba I; Chys M; Audenaert WT; Demeestere K; Van Hulle SW
    Waste Manag; 2015 Sep; 43():335-42. PubMed ID: 26117422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of silver nanoparticles by coagulation processes.
    Sun Q; Li Y; Tang T; Yuan Z; Yu CP
    J Hazard Mater; 2013 Oct; 261():414-20. PubMed ID: 23973474
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coagulation/flocculation of dye-containing solutions using polyaluminium chloride and alum.
    Zonoozi MH; Moghaddam MR; Arami M
    Water Sci Technol; 2009; 59(7):1343-51. PubMed ID: 19381000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coagulation and disinfection by-products formation potential of extracellular and intracellular matter of algae and cyanobacteria.
    Zhao Z; Sun W; Ray AK; Mao T; Ray MB
    Chemosphere; 2020 Apr; 245():125669. PubMed ID: 31881385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of pharmaceuticals in drinking water treatment: effect of chemical coagulation.
    Vieno N; Tuhkanen T; Kronberg L
    Environ Technol; 2006 Feb; 27(2):183-92. PubMed ID: 16506514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Relationship among coagulation effect of Al-based coagulant, content and speciation of residual aluminum].
    Yang ZL; Gao BY; Yue QY; Jiang YS
    Huan Jing Ke Xue; 2010 Jun; 31(6):1542-7. PubMed ID: 20698270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical coagulation of greywater: modelling using artificial neural networks.
    Vinitha EV; Mansoor Ahammed M; Gadekar MR
    Water Sci Technol; 2018 Jul; 2017(3):869-877. PubMed ID: 30016304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced algae removal by Ti-based coagulant: comparison with conventional Al- and Fe-based coagulants.
    Xu J; Zhao Y; Gao B; Zhao Q
    Environ Sci Pollut Res Int; 2018 May; 25(13):13147-13158. PubMed ID: 29492812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance of titanium salts compared to conventional FeCl
    Chekli L; Corjon E; Tabatabai SAA; Naidu G; Tamburic B; Park SH; Shon HK
    J Environ Manage; 2017 Oct; 201():28-36. PubMed ID: 28636970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of alum coagulation on the character, biodegradability and disinfection by-product formation potential of reservoir natural organic matter (NOM) fractions.
    Soh YC; Roddick F; van Leeuwen J
    Water Sci Technol; 2008; 58(6):1173-9. PubMed ID: 18845853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduction of organic matter and disinfection byproducts formation potential by titanium, aluminum and ferric salts coagulation for micro-polluted source water treatment.
    Wan Y; Huang X; Shi B; Shi J; Hao H
    Chemosphere; 2019 Mar; 219():28-35. PubMed ID: 30528970
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Ion-Exchange Coagulants Remove More Low Molecular Weight Organics than Traditional Coagulants.
    Zhao H; Wang L; Hanigan D; Westerhoff P; Ni J
    Environ Sci Technol; 2016 Apr; 50(7):3897-904. PubMed ID: 26974542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.