These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 30784481)
1. Thermal dependence of feeding performance and resting metabolic expenditure in different altitudinal populations of toad-headed lizards. Hu YC; Lu HL; Cheng KM; Luo LG; Zeng ZG J Therm Biol; 2019 Feb; 80():16-20. PubMed ID: 30784481 [TBL] [Abstract][Full Text] [Related]
2. Altitude influences thermal ecology and thermal sensitivity of locomotor performance in a toad-headed lizard. Wu Q; Dang W; Hu YC; Lu HL J Therm Biol; 2018 Jan; 71():136-141. PubMed ID: 29301682 [TBL] [Abstract][Full Text] [Related]
3. Environmental causes of between-population difference in growth rate of a high-altitude lizard. Lu HL; Xu CX; Zeng ZG; Du WG BMC Ecol; 2018 Sep; 18(1):37. PubMed ID: 30249235 [TBL] [Abstract][Full Text] [Related]
4. Resting metabolic expenditure as a potential source of variation in growth rates of the sagebrush lizard. Sears MW Comp Biochem Physiol A Mol Integr Physiol; 2005 Feb; 140(2):171-7. PubMed ID: 15748856 [TBL] [Abstract][Full Text] [Related]
5. Resting metabolic rates increase with elevation in a mountain-dwelling lizard. Plasman M; Bautista A; McCUE MD; DÍaz DE LA Vega-PÉrez AH Integr Zool; 2020 Sep; 15(5):363-374. PubMed ID: 32306560 [TBL] [Abstract][Full Text] [Related]
6. Ontogenetic shifts in thermal tolerance, selected body temperature and thermal dependence of food assimilation and locomotor performance in a lacertid lizard, Eremias brenchleyi. Xu XF; Ji X Comp Biochem Physiol A Mol Integr Physiol; 2006 Jan; 143(1):118-24. PubMed ID: 16380280 [TBL] [Abstract][Full Text] [Related]
7. Comparative metabolomics analysis reveals high-altitude adaptations in a toad-headed viviparous lizard, Phrynocephalus vlangalii. Zhang X; Men S; Jia L; Tang X; Storey KB; Niu Y; Chen Q Front Zool; 2023 Nov; 20(1):35. PubMed ID: 37919723 [TBL] [Abstract][Full Text] [Related]
8. Altitudinal variation in life-history features of a Qinghai-Tibetan Plateau lizard. Yu W; Zhu Z; Zhao X; Cui S; Liu Z; Zeng Z Curr Zool; 2023 Jun; 69(3):284-293. PubMed ID: 37351291 [TBL] [Abstract][Full Text] [Related]
9. Climate change, thermal niches, extinction risk and maternal-effect rescue of toad-headed lizards, Phrynocephalus, in thermal extremes of the Arabian Peninsula to the Qinghai-Tibetan Plateau. Sinervo B; Miles DB; Wu Y; Méndez-DE LA Cruz FR; Kirchhof S; Qi Y Integr Zool; 2018 Jul; 13(4):450-470. PubMed ID: 29436768 [TBL] [Abstract][Full Text] [Related]
10. Avoiding the effects of translocation on the estimates of the metabolic rates across an elevational gradient. Plasman M; Bautista A; Díaz de la Vega-Pérez AH J Comp Physiol B; 2022 Sep; 192(5):659-668. PubMed ID: 35851659 [TBL] [Abstract][Full Text] [Related]
11. Seasonal variation of metabolism in lizard Phrynocephalus vlangalii at high altitude. Liang S; Li W; Zhang Y; Tang X; He J; Bai Y; Li D; Wang Y; Chen Q Comp Biochem Physiol A Mol Integr Physiol; 2017 Jan; 203():341-347. PubMed ID: 27793615 [TBL] [Abstract][Full Text] [Related]
12. Variation in metabolic rate between populations of a geographically widespread lizard. Angilletta MJ Physiol Biochem Zool; 2001; 74(1):11-21. PubMed ID: 11226010 [TBL] [Abstract][Full Text] [Related]
13. Variation of preferred body temperatures along an altitudinal gradient: A multi-species study. Trochet A; Dupoué A; Souchet J; Bertrand R; Deluen M; Murarasu S; Calvez O; Martinez-Silvestre A; Verdaguer-Foz I; Darnet E; Chevalier HL; Mossoll-Torres M; Guillaume O; Aubret F J Therm Biol; 2018 Oct; 77():38-44. PubMed ID: 30196897 [TBL] [Abstract][Full Text] [Related]
14. Organ Mass Variation in a Toad Headed Lizard Phrynocephalus vlangalii in Response to Hypoxia and Low Temperature in the Qinghai-Tibet Plateau, China. Han J; Guo R; Li J; Guan C; Chen Y; Zhao W PLoS One; 2016; 11(9):e0162572. PubMed ID: 27603795 [TBL] [Abstract][Full Text] [Related]
15. Proximate causes of altitudinal differences in body size in an agamid lizard. Lu HL; Xu CX; Jin YT; Hero JM; Du WG Ecol Evol; 2018 Jan; 8(1):645-654. PubMed ID: 29321901 [TBL] [Abstract][Full Text] [Related]
16. Energy expenditure of the spotted snow skink, Niveoscincus ocellatus, at two climatic extremes of its distribution range. Yuni LP; Jones SM; Wapstra E J Therm Biol; 2015 Aug; 52():208-16. PubMed ID: 26267516 [TBL] [Abstract][Full Text] [Related]
18. Support for the thermal coadaptation hypothesis from the growth rates of Sceloporus jarrovii lizards. Patterson LD; Darveau CA; Blouin-Demers G J Therm Biol; 2017 Dec; 70(Pt B):86-96. PubMed ID: 29108562 [TBL] [Abstract][Full Text] [Related]
19. The different mechanisms of hypoxic acclimatization and adaptation in Lizard Phrynocephalus vlangalii living on Qinghai-Tibet Plateau. He J; Xiu M; Tang X; Yue F; Wang N; Yang S; Chen Q J Exp Zool A Ecol Genet Physiol; 2013 Mar; 319(3):117-23. PubMed ID: 23319459 [TBL] [Abstract][Full Text] [Related]
20. Lizards at the Peak: Physiological Plasticity Does Not Maintain Performance in Lizards Transplanted to High Altitude. Gangloff EJ; Sorlin M; Cordero GA; Souchet J; Aubret F Physiol Biochem Zool; 2019; 92(2):189-200. PubMed ID: 30714846 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]