BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30784741)

  • 1. Bacterial-facilitated uranium transport in the presence of phytate at Savannah River Site.
    Li R; Ibeanusi V; Hoyle-Gardner J; Crandall C; Jagoe C; Seaman J; Anandhi A; Chen G
    Chemosphere; 2019 May; 223():351-357. PubMed ID: 30784741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uranium phosphate biomineralization by fungi.
    Liang X; Hillier S; Pendlowski H; Gray N; Ceci A; Gadd GM
    Environ Microbiol; 2015 Jun; 17(6):2064-75. PubMed ID: 25580878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ uranium stabilization by microbial metabolites.
    Turick CE; Knox AS; Leverette CL; Kritzas YG
    J Environ Radioact; 2008 Jun; 99(6):890-9. PubMed ID: 18222573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotic dissolution of autunite under anaerobic conditions: effect of bicarbonates and Shewanella oneidensis MR1 microbial activity.
    Anagnostopoulos V; Katsenovich Y; Lee B; Lee HM
    Environ Geochem Health; 2020 Aug; 42(8):2547-2556. PubMed ID: 31858357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intercomparison of reactive transport models applied to UO2 oxidative dissolution and uranium migration.
    De Windt L; Burnol A; Montarnal P; van der Lee J
    J Contam Hydrol; 2003 Mar; 61(1-4):303-12. PubMed ID: 12598112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lactic acid bacteria induce phosphate recrystallization for the in situ remediation of uranium-contaminated topsoil: Principle and application.
    He Z; Dong L; Zhang K; Zhang D; Pan X
    Environ Pollut; 2022 Dec; 314():120277. PubMed ID: 36167164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of citrate and oxalate on
    Montgomery D; Barber K; Edayilam N; Oqujiuba K; Young S; Biotidara T; Gathers A; Danjaji M; Tharayil N; Martinez N; Powell B
    J Environ Radioact; 2017 Jun; 172():130-142. PubMed ID: 28351009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman spectroscopic study of the uranyl minerals vanmeersscheite U(OH)4[(UO2)3(PO4)2(OH)2].4H2O and arsenouranylite Ca(UO2)[(UO2)3(AsO4)2(OH)2].(OH)2.6H2O.
    Frost RL; Cejka J; Dickfos MJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jan; 71(5):1799-803. PubMed ID: 18691935
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Groundwater uranium origin and fate control in a river valley aquifer.
    Banning A; Demmel T; Rüde TR; Wrobel M
    Environ Sci Technol; 2013 Dec; 47(24):13941-8. PubMed ID: 24112070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling.
    Bea SA; Wainwright H; Spycher N; Faybishenko B; Hubbard SS; Denham ME
    J Contam Hydrol; 2013 Aug; 151():34-54. PubMed ID: 23707874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface passivation limited UO2 oxidative dissolution in the presence of FeS.
    Bi Y; Hayes KF
    Environ Sci Technol; 2014 Nov; 48(22):13402-11. PubMed ID: 25322064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone.
    Zachara JM; Long PE; Bargar J; Davis JA; Fox P; Fredrickson JK; Freshley MD; Konopka AE; Liu C; McKinley JP; Rockhold ML; Williams KH; Yabusaki SB
    J Contam Hydrol; 2013 Apr; 147():45-72. PubMed ID: 23500840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A spectroscopic study on U(VI) biomineralization in cultivated Pseudomonas fluorescens biofilms isolated from granitic aquifers.
    Krawczyk-Bärsch E; Lütke L; Moll H; Bok F; Steudtner R; Rossberg A
    Environ Sci Pollut Res Int; 2015 Mar; 22(6):4555-65. PubMed ID: 25318416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of Uranium(VI) with α-Amylase and Its Implication for Enzyme Activity.
    Barkleit A; Hennig C; Ikeda-Ohno A
    Chem Res Toxicol; 2018 Oct; 31(10):1032-1041. PubMed ID: 30207697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collagen fiber immobilized Myrica rubra tannin and its adsorption to UO2(2+).
    Liao X; Lu Z; Du X; Liu X; Shi B
    Environ Sci Technol; 2004 Jan; 38(1):324-8. PubMed ID: 14740754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of bacterial U(VI) reduction by calcium.
    Brooks SC; Fredrickson JK; Carroll SL; Kennedy DW; Zachara JM; Plymale AE; Kelly SD; Kemner KM; Fendorf S
    Environ Sci Technol; 2003 May; 37(9):1850-8. PubMed ID: 12775057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uranium bioprecipitation mediated by yeasts utilizing organic phosphorus substrates.
    Liang X; Csetenyi L; Gadd GM
    Appl Microbiol Biotechnol; 2016 Jun; 100(11):5141-51. PubMed ID: 26846744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial siderophores promote dissolution of UO2 under reducing conditions.
    Frazier SW; Kretzschmar R; Kraemer SM
    Environ Sci Technol; 2005 Aug; 39(15):5709-15. PubMed ID: 16124306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate amendments for chemical immobilization of uranium in contaminated soil.
    Baker MR; Coutelot FM; Seaman JC
    Environ Int; 2019 Aug; 129():565-572. PubMed ID: 31174144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental modeling of uranium interstitial compositions of non-stoichiometric oxides: experimental and theoretical analysis.
    Ivanova B; Spiteller M
    Environ Geochem Health; 2016 Oct; 38(5):1051-1066. PubMed ID: 26224683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.