BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 30785342)

  • 1. A Fast Parallel K-Modes Algorithm for Clustering Nucleotide Sequences to Predict Translation Initiation Sites.
    Castro GT; Zárate LE; Nobre CN; Freitas HC
    J Comput Biol; 2019 May; 26(5):442-456. PubMed ID: 30785342
    [No Abstract]   [Full Text] [Related]  

  • 2. NMF-mGPU: non-negative matrix factorization on multi-GPU systems.
    Mejía-Roa E; Tabas-Madrid D; Setoain J; García C; Tirado F; Pascual-Montano A
    BMC Bioinformatics; 2015 Feb; 16():43. PubMed ID: 25887585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GPUDePiCt: A Parallel Implementation of a Clustering Algorithm for Computing Degenerate Primers on Graphics Processing Units.
    Cickovski T; Flor T; Irving-Sachs G; Novikov P; Parda J; Narasimhan G
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):445-54. PubMed ID: 26357230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GPU-Acceleration of Sequence Homology Searches with Database Subsequence Clustering.
    Suzuki S; Kakuta M; Ishida T; Akiyama Y
    PLoS One; 2016; 11(8):e0157338. PubMed ID: 27482905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transductive learning as an alternative to translation initiation site identification.
    Nunes Pinto CL; Nobre CN; Zárate LE
    BMC Bioinformatics; 2017 Feb; 18(1):81. PubMed ID: 28152994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A parallel approximate string matching under Levenshtein distance on graphics processing units using warp-shuffle operations.
    Ho T; Oh SR; Kim H
    PLoS One; 2017; 12(10):e0186251. PubMed ID: 29016700
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards a HPC-oriented parallel implementation of a learning algorithm for bioinformatics applications.
    D'Angelo G; Rampone S
    BMC Bioinformatics; 2014; 15 Suppl 5(Suppl 5):S2. PubMed ID: 25077818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Massive exploration of perturbed conditions of the blood coagulation cascade through GPU parallelization.
    Cazzaniga P; Nobile MS; Besozzi D; Bellini M; Mauri G
    Biomed Res Int; 2014; 2014():863298. PubMed ID: 25025072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerating reaction-diffusion simulations with general-purpose graphics processing units.
    Vigelius M; Lane A; Meyer B
    Bioinformatics; 2011 Jan; 27(2):288-90. PubMed ID: 21062761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MrBayes on a graphics processing unit.
    Zhou J; Liu X; Stones DS; Xie Q; Wang G
    Bioinformatics; 2011 May; 27(9):1255-61. PubMed ID: 21414986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fast parallel Markov clustering in bioinformatics using massively parallel computing on GPU with CUDA and ELLPACK-R sparse format.
    Bustamam A; Burrage K; Hamilton NA
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(3):679-92. PubMed ID: 21483031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast parallel tandem mass spectral library searching using GPU hardware acceleration.
    Baumgardner LA; Shanmugam AK; Lam H; Eng JK; Martin DB
    J Proteome Res; 2011 Jun; 10(6):2882-8. PubMed ID: 21545112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MetWAMer: eukaryotic translation initiation site prediction.
    Sparks ME; Brendel V
    BMC Bioinformatics; 2008 Sep; 9():381. PubMed ID: 18801175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recognition of translation initiation sites of eukaryotic genes based on an EM algorithm.
    Wang Y; Ou H; Guo F
    J Comput Biol; 2003; 10(5):699-708. PubMed ID: 14633394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GPU-FS-kNN: a software tool for fast and scalable kNN computation using GPUs.
    Arefin AS; Riveros C; Berretta R; Moscato P
    PLoS One; 2012; 7(8):e44000. PubMed ID: 22937144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerating large-scale protein structure alignments with graphics processing units.
    Pang B; Zhao N; Becchi M; Korkin D; Shyu CR
    BMC Res Notes; 2012 Feb; 5():116. PubMed ID: 22357132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High performance computing for deformable image registration: towards a new paradigm in adaptive radiotherapy.
    Samant SS; Xia J; Muyan-Ozcelik P; Owens JD
    Med Phys; 2008 Aug; 35(8):3546-53. PubMed ID: 18777915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using GPUs for the exact alignment of short-read genetic sequences by means of the Burrows-Wheeler transform.
    Salavert Torres J; Blanquer Espert I; Domínguez AT; Hernández García V; Medina Castelló I; Tárraga Giménez J; Dopazo Blázquez J
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1245-56. PubMed ID: 22450827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement in the prediction of the translation initiation site through balancing methods, inclusion of acquired knowledge and addition of features to sequences of mRNA.
    Silva LM; Teixeira FC; Ortega JM; Zárate LE; Nobre CN
    BMC Genomics; 2011 Dec; 12 Suppl 4(Suppl 4):S9. PubMed ID: 22369295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translation initiation start prediction in human cDNAs with high accuracy.
    Hatzigeorgiou AG
    Bioinformatics; 2002 Feb; 18(2):343-50. PubMed ID: 11847092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.