These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 30785375)
1. Quantification of Si Ammour M; Fedele G; Morcia C; Terzi V; Rossi V Phytopathology; 2019 Jul; 109(7):1312-1319. PubMed ID: 30785375 [TBL] [Abstract][Full Text] [Related]
2. Reduction of Fedele G; González-Domínguez E; Si Ammour M; Languasco L; Rossi V Plant Dis; 2020 Mar; 104(3):808-816. PubMed ID: 31944905 [TBL] [Abstract][Full Text] [Related]
3. Use of LAMP for Assessing Si Ammour M; Castaldo E; Fedele G; Rossi V Plants (Basel); 2020 Nov; 9(11):. PubMed ID: 33187064 [TBL] [Abstract][Full Text] [Related]
4. Suppression of Botrytis cinerea on necrotic grapevine tissues by early-season applications of natural products and biological control agents. Calvo-Garrido C; Viñas I; Elmer PA; Usall J; Teixidó N Pest Manag Sci; 2014 Apr; 70(4):595-602. PubMed ID: 23744713 [TBL] [Abstract][Full Text] [Related]
5. Potential secondary inoculum sources of Botrytis cinerea and their influence on bunch rot development in dry Mediterranean climate vineyards. Calvo-Garrido C; Usall J; Viñas I; Elmer PA; Cases E; Teixidó N Pest Manag Sci; 2014 Jun; 70(6):922-30. PubMed ID: 23963875 [TBL] [Abstract][Full Text] [Related]
6. Nested PCR-RFLP is a high-speed method to detect fungicide-resistant Botrytis cinerea at an early growth stage of grapes. Saito S; Suzuki S; Takayanagi T Pest Manag Sci; 2009 Feb; 65(2):197-204. PubMed ID: 19051204 [TBL] [Abstract][Full Text] [Related]
7. Biological Control of Botrytis cinerea: Interactions with Native Vineyard Yeasts from Washington State. Wang X; Glawe DA; Kramer E; Weller D; Okubara PA Phytopathology; 2018 Jun; 108(6):691-701. PubMed ID: 29334476 [TBL] [Abstract][Full Text] [Related]
9. Consideration of Latent Infections Improves the Prediction of Botrytis Bunch Rot Severity in Vineyards. Fedele G; González-Domínguez E; Delière L; Díez-Navajas AM; Rossi V Plant Dis; 2020 May; 104(5):1291-1297. PubMed ID: 32191557 [TBL] [Abstract][Full Text] [Related]
10. Environmental Conditions Affect Botrytis cinerea Infection of Mature Grape Berries More Than the Strain or Transposon Genotype. Ciliberti N; Fermaud M; Roudet J; Rossi V Phytopathology; 2015 Aug; 105(8):1090-6. PubMed ID: 26218433 [TBL] [Abstract][Full Text] [Related]
11. Metabolomics reveals simultaneous influences of plant defence system and fungal growth in Botrytis cinerea-infected Vitis vinifera cv. Chardonnay berries. Hong YS; Martinez A; Liger-Belair G; Jeandet P; Nuzillard JM; Cilindre C J Exp Bot; 2012 Oct; 63(16):5773-85. PubMed ID: 22945941 [TBL] [Abstract][Full Text] [Related]
12. French vineyards provide information that opens ways for effective resistance management of Botrytis cinerea (grey mould). Walker AS; Micoud A; Rémuson F; Grosman J; Gredt M; Leroux P Pest Manag Sci; 2013 Jun; 69(6):667-78. PubMed ID: 23576292 [TBL] [Abstract][Full Text] [Related]
13. A network meta-analysis provides new insight into fungicide scheduling for the control of Botrytis cinerea in vineyards. González-Domínguez E; Fedele G; Caffi T; Delière L; Sauris P; Gramaje D; Ramos-Saez de Ojer JL; Díaz-Losada E; Díez-Navajas AM; Bengoa P; Rossi V Pest Manag Sci; 2019 Feb; 75(2):324-332. PubMed ID: 29885027 [TBL] [Abstract][Full Text] [Related]
14. Dual Mode of Action of Grape Cane Extracts against Botrytis cinerea. De Bona GS; Adrian M; Negrel J; Chiltz A; Klinguer A; Poinssot B; Héloir MC; Angelini E; Vincenzi S; Bertazzon N J Agric Food Chem; 2019 May; 67(19):5512-5520. PubMed ID: 31008600 [TBL] [Abstract][Full Text] [Related]
15. Integration of mathematical modeling and target-based application of biocontrol agents for the control of Botrytis cinerea in vineyards. Altieri V; Rossi V; Fedele G Pest Manag Sci; 2024 Sep; 80(9):4352-4360. PubMed ID: 38634563 [TBL] [Abstract][Full Text] [Related]
16. Characterisation of heteroplasmic status at codon 143 of the Botrytis cinerea cytochrome b gene in a semi-quantitative AS-PCR assay. Hashimoto M; Aoki Y; Saito S; Suzuki S Pest Manag Sci; 2015 Mar; 71(3):467-77. PubMed ID: 25067839 [TBL] [Abstract][Full Text] [Related]
17. Molecular analysis of the early interaction between the grapevine flower and Botrytis cinerea reveals that prompt activation of specific host pathways leads to fungus quiescence. Haile ZM; Pilati S; Sonego P; Malacarne G; Vrhovsek U; Engelen K; Tudzynski P; Zottini M; Baraldi E; Moser C Plant Cell Environ; 2017 Aug; 40(8):1409-1428. PubMed ID: 28239986 [TBL] [Abstract][Full Text] [Related]
18. Developmental and Metabolic Plasticity of White-Skinned Grape Berries in Response to Botrytis cinerea during Noble Rot. Blanco-Ulate B; Amrine KC; Collins TS; Rivero RM; Vicente AR; Morales-Cruz A; Doyle CL; Ye Z; Allen G; Heymann H; Ebeler SE; Cantu D Plant Physiol; 2015 Dec; 169(4):2422-43. PubMed ID: 26450706 [TBL] [Abstract][Full Text] [Related]
19. Biocontrol of Fedele G; Brischetto C; Rossi V Front Plant Sci; 2020; 11():1232. PubMed ID: 32922419 [TBL] [Abstract][Full Text] [Related]
20. Towards Sensor-Based Phenotyping of Physical Barriers of Grapes to Improve Resilience to Herzog K; Schwander F; Kassemeyer HH; Bieler E; Dürrenberger M; Trapp O; Töpfer R Front Plant Sci; 2021; 12():808365. PubMed ID: 35222454 [No Abstract] [Full Text] [Related] [Next] [New Search]