These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 30785463)

  • 1. Control of the overpotential of a [FeFe] hydrogenase mimic by a synthetic second coordination sphere.
    Nurttila SS; Zaffaroni R; Mathew S; Reek JNH
    Chem Commun (Camb); 2019 Mar; 55(21):3081-3084. PubMed ID: 30785463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [FeFe] hydrogenase active site modeling: a key intermediate bearing a thiolate proton and Fe hydride.
    Liu YC; Chu KT; Jhang RL; Lee GH; Chiang MH
    Chem Commun (Camb); 2013 May; 49(42):4743-5. PubMed ID: 23505629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere.
    Rauchfuss TB
    Acc Chem Res; 2015 Jul; 48(7):2107-16. PubMed ID: 26079848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Functional Model of [Fe]-Hydrogenase.
    Xu T; Yin CJ; Wodrich MD; Mazza S; Schultz KM; Scopelliti R; Hu X
    J Am Chem Soc; 2016 Mar; 138(10):3270-3. PubMed ID: 26926708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approaches to efficient molecular catalyst systems for photochemical H2 production using [FeFe]-hydrogenase active site mimics.
    Wang M; Chen L; Li X; Sun L
    Dalton Trans; 2011 Dec; 40(48):12793-800. PubMed ID: 21983599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase.
    Brazzolotto D; Gennari M; Queyriaux N; Simmons TR; Pécaut J; Demeshko S; Meyer F; Orio M; Artero V; Duboc C
    Nat Chem; 2016 Nov; 8(11):1054-1060. PubMed ID: 27768098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photocatalytic hydrogen production from a simple water-soluble [FeFe]-hydrogenase model system.
    Cao WN; Wang F; Wang HY; Chen B; Feng K; Tung CH; Wu LZ
    Chem Commun (Camb); 2012 Aug; 48(65):8081-3. PubMed ID: 22772838
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactions of [FeFe]-hydrogenase models involving the formation of hydrides related to proton reduction and hydrogen oxidation.
    Wang N; Wang M; Chen L; Sun L
    Dalton Trans; 2013 Sep; 42(34):12059-71. PubMed ID: 23846321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of [FeFe]-hydrogenase.
    Jian JX; Liu Q; Li ZJ; Wang F; Li XB; Li CB; Liu B; Meng QY; Chen B; Feng K; Tung CH; Wu LZ
    Nat Commun; 2013; 4():2695. PubMed ID: 24158139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proton reduction to hydrogen in biological and chemical systems.
    Tran PD; Barber J
    Phys Chem Chem Phys; 2012 Oct; 14(40):13772-84. PubMed ID: 22965001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial hydrogenase: biomimetic approaches controlling active molecular catalysts.
    Onoda A; Hayashi T
    Curr Opin Chem Biol; 2015 Apr; 25():133-40. PubMed ID: 25617828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation, observation, and computational modeling of proposed intermediates in catalytic proton reductions with the hydrogenase mimic Fe2(CO)6S2C6H4.
    Wright RJ; Zhang W; Yang X; Fasulo M; Tilley TD
    Dalton Trans; 2012 Jan; 41(1):73-82. PubMed ID: 22031098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic hydrogen production by a Ni-Ru mimic of NiFe hydrogenases involves a proton-coupled electron transfer step.
    Canaguier S; Fourmond V; Perotto CU; Fize J; Pécaut J; Fontecave M; Field MJ; Artero V
    Chem Commun (Camb); 2013 Jun; 49(44):5004-6. PubMed ID: 23612503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Linear Scaling Relationships to Predict p
    Puthenkalathil RC; Ensing B
    Inorg Chem; 2022 Jan; 61(1):113-120. PubMed ID: 34955025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron-only hydrogenase mimics. Thermodynamic aspects of the use of electrochemistry to evaluate catalytic efficiency for hydrogen generation.
    Felton GA; Glass RS; Lichtenberger DL; Evans DH
    Inorg Chem; 2006 Nov; 45(23):9181-4. PubMed ID: 17083215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Dynamics Studies of Proton Transport in Hydrogenase and Hydrogenase Mimics.
    Ginovska B; Raugei S; Shaw WJ
    Methods Enzymol; 2016; 578():73-101. PubMed ID: 27497163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selenium makes the difference: protonation of [FeFe]-hydrogenase mimics with diselenolato ligands.
    Abul-Futouh H; El-Khateeb M; Görls H; Asali KJ; Weigand W
    Dalton Trans; 2017 Feb; 46(9):2937-2947. PubMed ID: 28197594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of the H-cluster framework of iron-only hydrogenase.
    Tard C; Liu X; Ibrahim SK; Bruschi M; De Gioia L; Davies SC; Yang X; Wang LS; Sawers G; Pickett CJ
    Nature; 2005 Feb; 433(7026):610-3. PubMed ID: 15703741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible electrocatalytic production and oxidation of hydrogen at low overpotentials by a functional hydrogenase mimic.
    Smith SE; Yang JY; DuBois DL; Bullock RM
    Angew Chem Int Ed Engl; 2012 Mar; 51(13):3152-5. PubMed ID: 22334352
    [No Abstract]   [Full Text] [Related]  

  • 20. [FeFe]-Hydrogenase Mimetic Metallopolymers with Enhanced Catalytic Activity for Hydrogen Production in Water.
    Brezinski WP; Karayilan M; Clary KE; Pavlopoulos NG; Li S; Fu L; Matyjaszewski K; Evans DH; Glass RS; Lichtenberger DL; Pyun J
    Angew Chem Int Ed Engl; 2018 Sep; 57(37):11898-11902. PubMed ID: 30053346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.