These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 30785671)
1. Periosteum-derived mesenchymal progenitor cells in engineered implants promote fracture healing in a critical-size defect rat model. González-Gil AB; Lamo-Espinosa JM; Muiños-López E; Ripalda-Cemboráin P; Abizanda G; Valdés-Fernández J; López-Martínez T; Flandes-Iparraguirre M; Andreu I; Elizalde MR; Stuckensen K; Groll J; De-Juan-Pardo EM; Prósper F; Granero-Moltó F J Tissue Eng Regen Med; 2019 May; 13(5):742-752. PubMed ID: 30785671 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of polycaprolactone-silanated β-tricalcium phosphate-heparan sulfate scaffolds for spinal fusion applications. Bhakta G; Ekaputra AK; Rai B; Abbah SA; Tan TC; Le BQ; Chatterjea A; Hu T; Lin T; Arafat MT; van Wijnen AJ; Goh J; Nurcombe V; Bhakoo K; Birch W; Xu L; Gibson I; Wong HK; Cool SM Spine J; 2018 May; 18(5):818-830. PubMed ID: 29269312 [TBL] [Abstract][Full Text] [Related]
3. 17β-estradiol improves the efficacy of exploited autologous bone marrow-derived mesenchymal stem cells in non-union radial defect healing: A rabbit model. Zamani Mazdeh D; Mirshokraei P; Emami M; Mirshahi A; Karimi I Res Vet Sci; 2018 Jun; 118():11-18. PubMed ID: 29334646 [TBL] [Abstract][Full Text] [Related]
4. Hypoxia and Reactive Oxygen Species Homeostasis in Mesenchymal Progenitor Cells Define a Molecular Mechanism for Fracture Nonunion. Muinos-López E; Ripalda-Cemboráin P; López-Martínez T; González-Gil AB; Lamo-Espinosa JM; Valentí A; Mortlock DP; Valentí JR; Prósper F; Granero-Moltó F Stem Cells; 2016 Sep; 34(9):2342-53. PubMed ID: 27250101 [TBL] [Abstract][Full Text] [Related]
5. Healing of Experimentally Created Non-Union of Femur in Rats Using Bone Precursor Cells from Mesenchymal Stem Cells (MSCs). Mir SA; Azam MQ; Al-Dakheel DA; Acharya S J Stem Cells; 2015; 10(2):91-6. PubMed ID: 27125137 [TBL] [Abstract][Full Text] [Related]
7. Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue. Hayashi O; Katsube Y; Hirose M; Ohgushi H; Ito H Calcif Tissue Int; 2008 Mar; 82(3):238-47. PubMed ID: 18305886 [TBL] [Abstract][Full Text] [Related]
8. Periosteum and development of the tissue-engineered periosteum for guided bone regeneration. Zhang W; Wang N; Yang M; Sun T; Zhang J; Zhao Y; Huo N; Li Z J Orthop Translat; 2022 Mar; 33():41-54. PubMed ID: 35228996 [TBL] [Abstract][Full Text] [Related]
9. Glial Cell Line-Derived Neurotrophic Factor-Transfected Placenta-Derived Versus Bone Marrow-Derived Mesenchymal Cells for Treating Spinal Cord Injury. Lu Y; Gao H; Zhang M; Chen B; Yang H Med Sci Monit; 2017 Apr; 23():1800-1811. PubMed ID: 28408732 [TBL] [Abstract][Full Text] [Related]
10. Physiologic load-bearing characteristics of autografts, allografts, and polymer-based scaffolds in a critical sized segmental defect of long bone: an experimental study. Amorosa LF; Lee CH; Aydemir AB; Nizami S; Hsu A; Patel NR; Gardner TR; Navalgund A; Kim DG; Park SH; Mao JJ; Lee FY Int J Nanomedicine; 2013; 8():1637-43. PubMed ID: 23637532 [TBL] [Abstract][Full Text] [Related]
11. Porous Se@SiO Li C; Wang Q; Gu X; Kang Y; Zhang Y; Hu Y; Li T; Jin H; Deng G; Wang Q Int J Nanomedicine; 2019; 14():3845-3860. PubMed ID: 31213805 [No Abstract] [Full Text] [Related]
12. Tissue engineered vascularized periosteal flap enriched with MSC/EPCs for the treatment of large bone defects in rats. Nau C; Henrich D; Seebach C; Schröder K; Barker JH; Marzi I; Frank J Int J Mol Med; 2017 Apr; 39(4):907-917. PubMed ID: 28259928 [TBL] [Abstract][Full Text] [Related]
13. The effect of mesenchymal stem cells delivered via hydrogel-based tissue engineered periosteum on bone allograft healing. Hoffman MD; Xie C; Zhang X; Benoit DS Biomaterials; 2013 Nov; 34(35):8887-98. PubMed ID: 23958029 [TBL] [Abstract][Full Text] [Related]
14. Hydrogel-based Delivery of rhBMP-2 Improves Healing of Large Bone Defects Compared With Autograft. Krishnan L; Priddy LB; Esancy C; Li MT; Stevens HY; Jiang X; Tran L; Rowe DW; Guldberg RE Clin Orthop Relat Res; 2015 Sep; 473(9):2885-97. PubMed ID: 25917422 [TBL] [Abstract][Full Text] [Related]
15. Comparative study between coral-mesenchymal stem cells-rhBMP-2 composite and auto-bone-graft in rabbit critical-sized cranial defect model. Hou R; Chen F; Yang Y; Cheng X; Gao Z; Yang HO; Wu W; Mao T J Biomed Mater Res A; 2007 Jan; 80(1):85-93. PubMed ID: 16960828 [TBL] [Abstract][Full Text] [Related]
16. Placenta- versus bone-marrow-derived mesenchymal cells for the repair of segmental bone defects in a rabbit model. Fan ZX; Lu Y; Deng L; Li XQ; Zhi W; Li-Ling J; Yang ZM; Xie HQ FEBS J; 2012 Jul; 279(13):2455-65. PubMed ID: 22564891 [TBL] [Abstract][Full Text] [Related]
17. Engineering biomimetic periosteum with β-TCP scaffolds to promote bone formation in calvarial defects of rats. Zhang D; Gao P; Li Q; Li J; Li X; Liu X; Kang Y; Ren L Stem Cell Res Ther; 2017 Jun; 8(1):134. PubMed ID: 28583167 [TBL] [Abstract][Full Text] [Related]
18. Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering. Zhang X; Xie C; Lin AS; Ito H; Awad H; Lieberman JR; Rubery PT; Schwarz EM; O'Keefe RJ; Guldberg RE J Bone Miner Res; 2005 Dec; 20(12):2124-37. PubMed ID: 16294266 [TBL] [Abstract][Full Text] [Related]
19. Emulating native periosteum cell population and subsequent paracrine factor production to promote tissue engineered periosteum-mediated allograft healing. Hoffman MD; Benoit DS Biomaterials; 2015 Jun; 52():426-40. PubMed ID: 25818449 [TBL] [Abstract][Full Text] [Related]
20. Systemic and Local Administration of Allogeneic Bone Marrow-Derived Mesenchymal Stem Cells Promotes Fracture Healing in Rats. Huang S; Xu L; Zhang Y; Sun Y; Li G Cell Transplant; 2015; 24(12):2643-55. PubMed ID: 25647659 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]