These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30786067)

  • 1. New Organic Electrode Materials for Ultrafast Electrochemical Energy Storage.
    Zhao-Karger Z; Gao P; Ebert T; Klyatskaya S; Chen Z; Ruben M; Fichtner M
    Adv Mater; 2019 Jun; 31(26):e1806599. PubMed ID: 30786067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoengineered Organic Electrodes for Highly Durable and Ultrafast Cycling of Organic Sodium-Ion Batteries.
    Thangavel R; Moorthy M; Ganesan BK; Lee W; Yoon WS; Lee YS
    Small; 2020 Oct; 16(41):e2003688. PubMed ID: 32964623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copper Porphyrin as a Stable Cathode for High-Performance Rechargeable Potassium Organic Batteries.
    Lv S; Yuan J; Chen Z; Gao P; Shu H; Yang X; Liu E; Tan S; Ruben M; Zhao-Karger Z; Fichtner M
    ChemSusChem; 2020 May; 13(9):2286-2294. PubMed ID: 32187437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Thin Layers in Nanostructures for Energy Storage.
    Noked M; Liu C; Hu J; Gregorczyk K; Rubloff GW; Lee SB
    Acc Chem Res; 2016 Oct; 49(10):2336-2346. PubMed ID: 27636834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage.
    Zhang C; Zhang L; Yu G
    Acc Chem Res; 2020 Aug; 53(8):1648-1659. PubMed ID: 32672933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbonyl-Based π-Conjugated Materials: From Synthesis to Applications in Lithium-Ion Batteries.
    Oubaha H; Gohy JF; Melinte S
    Chempluschem; 2019 Sep; 84(9):1179-1214. PubMed ID: 31944053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Porphyrin Complex as a Self-Conditioned Electrode Material for High-Performance Energy Storage.
    Gao P; Chen Z; Zhao-Karger Z; Mueller JE; Jung C; Klyatskaya S; Diemant T; Fuhr O; Jacob T; Behm RJ; Ruben M; Fichtner M
    Angew Chem Int Ed Engl; 2017 Aug; 56(35):10341-10346. PubMed ID: 28627132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Progress in Iron-Based Electrode Materials for Grid-Scale Sodium-Ion Batteries.
    Fang Y; Chen Z; Xiao L; Ai X; Cao Y; Yang H
    Small; 2018 Mar; 14(9):. PubMed ID: 29318782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MXene as a Charge Storage Host.
    Okubo M; Sugahara A; Kajiyama S; Yamada A
    Acc Chem Res; 2018 Mar; 51(3):591-599. PubMed ID: 29469564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of organic precursors and graphenes in the controlled synthesis of carbon-containing nanomaterials for energy storage and conversion.
    Yang S; Bachman RE; Feng X; Müllen K
    Acc Chem Res; 2013 Jan; 46(1):116-28. PubMed ID: 23110511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale Protection Layers To Mitigate Degradation in High-Energy Electrochemical Energy Storage Systems.
    Lin CF; Qi Y; Gregorczyk K; Lee SB; Rubloff GW
    Acc Chem Res; 2018 Jan; 51(1):97-106. PubMed ID: 29293316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The rise of organic electrode materials for energy storage.
    Schon TB; McAllister BT; Li PF; Seferos DS
    Chem Soc Rev; 2016 Nov; 45(22):6345-6404. PubMed ID: 27273252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast-Charging Silicon-Based Coral-Like Network Anodes for Lithium-Ion Batteries with High Energy and Power Densities.
    Wang B; Ryu J; Choi S; Zhang X; Pribat D; Li X; Zhi L; Park S; Ruoff RS
    ACS Nano; 2019 Feb; 13(2):2307-2315. PubMed ID: 30707012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry.
    Lei Z; Yang Q; Xu Y; Guo S; Sun W; Liu H; Lv LP; Zhang Y; Wang Y
    Nat Commun; 2018 Feb; 9(1):576. PubMed ID: 29422540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Templated Formation of Hollow Structures for Electrochemical Energy Applications.
    Yu L; Wu HB; Lou XW
    Acc Chem Res; 2017 Feb; 50(2):293-301. PubMed ID: 28128931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solution-Processable Thermally Crosslinked Organic Radical Polymer Battery Cathodes.
    Wang S; Park AMG; Flouda P; Easley AD; Li F; Ma T; Fuchs GD; Lutkenhaus JL
    ChemSusChem; 2020 May; 13(9):2371-2378. PubMed ID: 31951674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured Conductive Polymer Gels as a General Framework Material To Improve Electrochemical Performance of Cathode Materials in Li-Ion Batteries.
    Shi Y; Zhou X; Zhang J; Bruck AM; Bond AC; Marschilok AC; Takeuchi KJ; Takeuchi ES; Yu G
    Nano Lett; 2017 Mar; 17(3):1906-1914. PubMed ID: 28191854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage gain in lithiated enolate-based organic cathode materials by isomeric effect.
    Gottis S; Barrès AL; Dolhem F; Poizot P
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):10870-6. PubMed ID: 24593164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.