BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30786069)

  • 1. Performance improvement of plasmonic sensors using a combination of AC electrokinetic effects for (bio)target capture.
    Avenas Q; Moreau J; Costella M; Maalaoui A; Souifi A; Charette P; Marchalot J; Frénéa-Robin M; Canva M
    Electrophoresis; 2019 May; 40(10):1426-1435. PubMed ID: 30786069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectrophoretic cell trapping for improved surface plasmon resonance imaging sensing.
    Costella M; Avenas Q; Frénéa-Robin M; Marchalot J; Bevilacqua P; Charette PG; Canva M
    Electrophoresis; 2019 May; 40(10):1417-1425. PubMed ID: 30830963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectrophoresis-enhanced plasmonic sensing with gold nanohole arrays.
    Barik A; Otto LM; Yoo D; Jose J; Johnson TW; Oh SH
    Nano Lett; 2014; 14(4):2006-12. PubMed ID: 24646075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive Bacterial Detection via Dielectrophoretic-Enhanced Mass Transport Using Surface-Plasmon-Resonance Biosensors.
    Galvan DD; Parekh V; Liu E; Liu EL; Yu Q
    Anal Chem; 2018 Dec; 90(24):14635-14642. PubMed ID: 30433764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AC Electroosmosis-Enhanced Nanoplasmofluidic Detection of Ultralow-Concentration Cytokine.
    Song Y; Chen P; Chung MT; Nidetz R; Park Y; Liu Z; McHugh W; Cornell TT; Fu J; Kurabayashi K
    Nano Lett; 2017 Apr; 17(4):2374-2380. PubMed ID: 28296413
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrode-based AC electrokinetics of proteins: A mini-review.
    Laux EM; Bier FF; Hölzel R
    Bioelectrochemistry; 2018 Apr; 120():76-82. PubMed ID: 29182911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and Sensitive Detection by Combining Electric Field Effects and Surface Plasmon Resonance: A Theoretical Study.
    Qiu Q; Xu Y
    Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced cell trapping throughput using DC-biased AC electric field in a dielectrophoresis-based fluidic device with densely packed silica beads.
    Lewpiriyawong N; Xu G; Yang C
    Electrophoresis; 2018 Mar; 39(5-6):878-886. PubMed ID: 29288585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonant dielectrophoresis and electrohydrodynamics for high-sensitivity impedance detection of whole-cell bacteria.
    Couniot N; Francis LA; Flandre D
    Lab Chip; 2015 Aug; 15(15):3183-91. PubMed ID: 26120099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplex spectral surface plasmon resonance imaging (SPRI) sensor based on the polarization control scheme.
    Wong CL; Chen GC; Ng BK; Agarwal S; Lin Z; Chen P; Ho HP
    Opt Express; 2011 Sep; 19(20):18965-78. PubMed ID: 21996838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of dielectrophoretic/electrohydrodynamic "zipper" electrodes for detection of biological nanoparticles.
    Hübner Y; Hoettges KF; McDonnell MB; Carter MJ; Hughes MP
    Int J Nanomedicine; 2007; 2(3):427-31. PubMed ID: 18019841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dielectrophoretic continuous flow sorter using integrated microelectrodes coupled to a channel constriction.
    Salomon S; Leichlé T; Nicu L
    Electrophoresis; 2011 Jun; 32(12):1508-14. PubMed ID: 21563186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localized surface plasmon resonance biosensor: an improved technique for SERS response intensification.
    Islam MS; Sultana J; Ahmmed Aoni R; Habib MS; Dinovitser A; Ng BW; Abbott D
    Opt Lett; 2019 Mar; 44(5):1134-1137. PubMed ID: 30821731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A.
    Huang CF; Yao GH; Liang RP; Qiu JD
    Biosens Bioelectron; 2013 Dec; 50():305-10. PubMed ID: 23876541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-Dimensional Surface Plasmon Resonance Imaging System for Cellular Analysis.
    Mir TA; Shinohara H
    Methods Mol Biol; 2017; 1571():31-46. PubMed ID: 28281248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional droplet-based surface plasmon resonance imaging using electrowetting-on-dielectric microfluidics.
    Malic L; Veres T; Tabrizian M
    Lab Chip; 2009 Feb; 9(3):473-5. PubMed ID: 19156299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic field-assisted SPR biosensor based on carboxyl-functionalized graphene oxide sensing film and Fe3O4-hollow gold nanohybrids probe.
    Wu Q; Sun Y; Zhang D; Li S; Wang X; Song D
    Biosens Bioelectron; 2016 Dec; 86():95-101. PubMed ID: 27336617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AC-Electroosmosis-Assisted Surface Plasmon Resonance Sensing for Enhancing Protein Signals with a Simple Kretschmann Configuration.
    Terao K; Kondo S
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured digital microfluidics for enhanced surface plasmon resonance imaging.
    Malic L; Veres T; Tabrizian M
    Biosens Bioelectron; 2011 Jan; 26(5):2053-9. PubMed ID: 20926281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High resolution surface plasmon resonance imaging for single cells.
    Peterson AW; Halter M; Tona A; Plant AL
    BMC Cell Biol; 2014 Dec; 15():35. PubMed ID: 25441447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.