BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30786069)

  • 21. Characterization of particle capture in a sawtooth patterned insulating electrokinetic microfluidic device.
    Staton SJ; Chen KP; Taylor TJ; Pacheco JR; Hayes MA
    Electrophoresis; 2010 Nov; 31(22):3634-41. PubMed ID: 21077235
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design of a High-Performance Micro Integrated Surface Plasmon Resonance Sensor Based on Silicon-On-Insulator Rib Waveguide Array.
    Yuan D; Dong Y; Liu Y; Li T
    Sensors (Basel); 2015 Jul; 15(7):17313-28. PubMed ID: 26193277
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrasensitive magnetic field-assisted surface plasmon resonance immunoassay for human cardiac troponin I.
    Wu Q; Sun Y; Zhang D; Li S; Zhang Y; Ma P; Yu Y; Wang X; Song D
    Biosens Bioelectron; 2017 Oct; 96():288-293. PubMed ID: 28505563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A reusable optical biosensor for the ultrasensitive and selective detection of unamplified human genomic DNA with gold nanostars.
    Mariani S; Scarano S; Spadavecchia J; Minunni M
    Biosens Bioelectron; 2015 Dec; 74():981-8. PubMed ID: 26264264
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrated dual-modality microfluidic sensor for biomarker detection using lithographic plasmonic crystal.
    Ali MA; Tabassum S; Wang Q; Wang Y; Kumar R; Dong L
    Lab Chip; 2018 Feb; 18(5):803-817. PubMed ID: 29431801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrated-optic biosensor by electro-optically modulated surface plasmon resonance.
    Wang TJ; Lin WS; Liu FK
    Biosens Bioelectron; 2007 Feb; 22(7):1441-6. PubMed ID: 16876989
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrothermal pumping with interdigitated electrodes and resistive heaters.
    Williams SJ; Green NG
    Electrophoresis; 2015 Aug; 36(15):1681-9. PubMed ID: 26010255
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Colorimetric surface plasmon resonance imaging (SPRI) biosensor array based on polarization orientation.
    Wong CL; Chen GC; Li X; Ng BK; Shum P; Chen P; Lin Z; Lin C; Olivo M
    Biosens Bioelectron; 2013 Sep; 47():545-52. PubMed ID: 23644060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Voltage-modulated surface plasmon resonance biosensors integrated with gold nanohole arrays.
    Ma SC; Gupta R; Ondevilla NAP; Barman K; Lee LY; Chang HC; Huang JJ
    Biomed Opt Express; 2023 Jan; 14(1):182-193. PubMed ID: 36698656
    [TBL] [Abstract][Full Text] [Related]  

  • 30. AC electrokinetic immobilization of influenza virus.
    Stanke S; Wenger C; Bier FF; Hölzel R
    Electrophoresis; 2022 Jun; 43(12):1309-1321. PubMed ID: 35307846
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Portable and field-deployed surface plasmon resonance and plasmonic sensors.
    Masson JF
    Analyst; 2020 Jun; 145(11):3776-3800. PubMed ID: 32374303
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Real-time dielectrophoretic signaling and image quantification methods for evaluating electrokinetic properties of nanoparticles.
    Bakewell DJ; Bailey J; Holmes D
    Electrophoresis; 2015 Jul; 36(13):1443-50. PubMed ID: 25872874
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmonic sensors for the competitive detection of testosterone.
    Yockell-Lelièvre H; Bukar N; McKeating KS; Arnaud M; Cosin P; Guo Y; Dupret-Carruel J; Mougin B; Masson JF
    Analyst; 2015 Aug; 140(15):5105-11. PubMed ID: 26034786
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Numerical study on an application of subwavelength dielectric gratings for high-sensitivity plasmonic detection.
    Jung WK; Kim NH; Byun KM
    Appl Opt; 2012 Jul; 51(20):4722-9. PubMed ID: 22781248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spectrometer-Free Plasmonic Biosensing with Metal-Insulator-Metal Nanocup Arrays.
    Hackett LP; Ameen A; Li W; Dar FK; Goddard LL; Liu GL
    ACS Sens; 2018 Feb; 3(2):290-298. PubMed ID: 29380595
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A low sample volume particle separation device with electrokinetic pumping based on circular travelling-wave electroosmosis.
    Lin SC; Lu JC; Sung YL; Lin CT; Tung YC
    Lab Chip; 2013 Aug; 13(15):3082-9. PubMed ID: 23753015
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiplexing microelectrodes for dielectrophoretic manipulation and electrical impedance measurement of single particles and cells in a microfluidic device.
    Geng Y; Zhu Z; Wang Y; Wang Y; Ouyang S; Zheng K; Ye W; Fan Y; Wang Z; Pan D
    Electrophoresis; 2019 May; 40(10):1436-1445. PubMed ID: 30706494
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An integrated dielectrophoretic quartz crystal microbalance (DEP-QCM) device for rapid biosensing applications.
    Fatoyinbo HO; Hoettges KF; Reddy SM; Hughes MP
    Biosens Bioelectron; 2007 Sep; 23(2):225-32. PubMed ID: 17509862
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fast spectral surface plasmon resonance imaging sensor for real-time high-throughput detection of biomolecular interactions.
    Chen K; Zeng Y; Wang L; Gu D; He J; Wu SY; Ho HP; Li X; Qu J; Gao BZ; Shao Y
    J Biomed Opt; 2016 Dec; 21(12):127003. PubMed ID: 27936268
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.