These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30786145)

  • 1. Roles of electrical stimulation in promoting osteogenic differentiation of BMSCs on conductive fibers.
    Jing W; Huang Y; Wei P; Cai Q; Yang X; Zhong W
    J Biomed Mater Res A; 2019 Jul; 107(7):1443-1454. PubMed ID: 30786145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-dependent effect of electrical stimulation on osteogenic differentiation of bone mesenchymal stromal cells cultured on conductive nanofibers.
    Zhu S; Jing W; Hu X; Huang Z; Cai Q; Ao Y; Yang X
    J Biomed Mater Res A; 2017 Dec; 105(12):3369-3383. PubMed ID: 28795778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promoting osteogenic differentiation of BMSCs via mineralization of polylactide/gelatin composite fibers in cell culture medium.
    Cao M; Zhou Y; Mao J; Wei P; Chen D; Wang R; Cai Q; Yang X
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():862-873. PubMed ID: 30948124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Composites made of polyorganophosphazene and carbon nanotube up-regulating osteogenic activity of BMSCs under electrical stimulation.
    Huang Y; Jing W; Li Y; Cai Q; Yang X
    Colloids Surf B Biointerfaces; 2021 Aug; 204():111785. PubMed ID: 33932894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical stimulation of adipose-derived mesenchymal stem cells in conductive scaffolds and the roles of voltage-gated ion channels.
    Zhang J; Li M; Kang ET; Neoh KG
    Acta Biomater; 2016 Mar; 32():46-56. PubMed ID: 26703122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of substrate-mediated electrical stimulation on the promotion of osteogenic differentiation and its optimization.
    Hu WW; Chen TC; Tsao CW; Cheng YC
    J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1607-1619. PubMed ID: 30318825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential application of mineralized electroconductive scaffold and electrical stimulation for efficient osteogenesis.
    Oftadeh MO; Bakhshandeh B; Dehghan MM; Khojasteh A
    J Biomed Mater Res A; 2018 May; 106(5):1200-1210. PubMed ID: 29271055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulating proliferation and differentiation of osteoblasts on poly(l-lactide)/gelatin composite nanofibers via timed biomineralization.
    Zhang C; Cao M; Lan J; Wei P; Cai Q; Yang X
    J Biomed Mater Res A; 2016 Aug; 104(8):1968-80. PubMed ID: 27027483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strontium-incorporated mineralized PLLA nanofibrous membranes for promoting bone defect repair.
    Han X; Zhou X; Qiu K; Feng W; Mo H; Wang M; Wang J; He C
    Colloids Surf B Biointerfaces; 2019 Jul; 179():363-373. PubMed ID: 30999115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxyapatite/collagen coating on PLGA electrospun fibers for osteogenic differentiation of bone marrow mesenchymal stem cells.
    Yang X; Li Y; He W; Huang Q; Zhang R; Feng Q
    J Biomed Mater Res A; 2018 Nov; 106(11):2863-2870. PubMed ID: 30289593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Baghdadite nanoparticle-coated poly l-lactic acid (PLLA) ceramics scaffold improved osteogenic differentiation of adipose tissue-derived mesenchymal stem cells.
    Karimi Z; Seyedjafari E; Mahdavi FS; Hashemi SM; Khojasteh A; Kazemi B; Mohammadi-Yeganeh S
    J Biomed Mater Res A; 2019 Jun; 107(6):1284-1293. PubMed ID: 30706628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomineralization improves mechanical and osteogenic properties of multilayer-modified PLGA porous scaffolds.
    Kong J; Wei B; Groth T; Chen Z; Li L; He D; Huang R; Chu J; Zhao M
    J Biomed Mater Res A; 2018 Oct; 106(10):2714-2725. PubMed ID: 30133124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Osteogenic differentiation of marrow stromal cells on random and aligned electrospun poly(L-lactide) nanofibers.
    Ma J; He X; Jabbari E
    Ann Biomed Eng; 2011 Jan; 39(1):14-25. PubMed ID: 20577811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene/Si-Promoted Osteogenic Differentiation of BMSCs through Light Illumination.
    Long X; Wang X; Yao L; Lin S; Zhang J; Weng W; Cheng K; Wang H; Lin J
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):43857-43864. PubMed ID: 31692325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of SHP-2 gene transduced bone marrow mesenchymal stem cells to promote osteogenic differentiation and bone defect repair in rat.
    Fan D; Liu S; Jiang S; Li Z; Mo X; Ruan H; Zou GM; Fan C
    J Biomed Mater Res A; 2016 Aug; 104(8):1871-81. PubMed ID: 26999642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conductive nanofibrous composite scaffolds based on in-situ formed polyaniline nanoparticle and polylactide for bone regeneration.
    Chen J; Yu M; Guo B; Ma PX; Yin Z
    J Colloid Interface Sci; 2018 Mar; 514():517-527. PubMed ID: 29289734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing the Osteogenic Potentials and Bone Regeneration Capacities of Bone Marrow and Dental Pulp Mesenchymal Stem Cells in a Rabbit Calvarial Bone Defect Model.
    Lee YC; Chan YH; Hsieh SC; Lew WZ; Feng SW
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31658685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promoting neural transdifferentiation of BMSCs via applying synergetic multiple factors for nerve regeneration.
    Jing W; Zuo D; Cai Q; Chen G; Wang L; Yang X; Zhong W
    Exp Cell Res; 2019 Feb; 375(2):80-91. PubMed ID: 30597144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long non-coding RNA HULC promotes proliferation and osteogenic differentiation of bone mesenchymal stem cells via down-regulation of miR-195.
    Jiang XR; Guo N; Li XQ; Yang HY; Wang K; Zhang CL; Li GS; Li GD
    Eur Rev Med Pharmacol Sci; 2018 May; 22(10):2954-2965. PubMed ID: 29863237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrical stimulation to promote osteogenesis using conductive polypyrrole films.
    Hu WW; Hsu YT; Cheng YC; Li C; Ruaan RC; Chien CC; Chung CA; Tsao CW
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():28-36. PubMed ID: 24582219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.