These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 30786230)

  • 1. Split Green Fluorescent Proteins: Scope, Limitations, and Outlook.
    Romei MG; Boxer SG
    Annu Rev Biophys; 2019 May; 48():19-44. PubMed ID: 30786230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folding coupled with assembly in split green fluorescent proteins studied by structure-based molecular simulations.
    Ito M; Ozawa T; Takada S
    J Phys Chem B; 2013 Oct; 117(42):13212-8. PubMed ID: 23679014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast complementation of split fluorescent protein triggered by DNA hybridization.
    Demidov VV; Dokholyan NV; Witte-Hoffmann C; Chalasani P; Yiu HW; Ding F; Yu Y; Cantor CR; Broude NE
    Proc Natl Acad Sci U S A; 2006 Feb; 103(7):2052-6. PubMed ID: 16461889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism and bottlenecks in strand photodissociation of split green fluorescent proteins (GFPs).
    Lin CY; Both J; Do K; Boxer SG
    Proc Natl Acad Sci U S A; 2017 Mar; 114(11):E2146-E2155. PubMed ID: 28242710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Re-engineering a split-GFP reassembly screen to examine RING-domain interactions between BARD1 and BRCA1 mutants observed in cancer patients.
    Sarkar M; Magliery TJ
    Mol Biosyst; 2008 Jun; 4(6):599-605. PubMed ID: 18493658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and Applications of Superfolder and Split Fluorescent Protein Detection Systems in Biology.
    Pedelacq JD; Cabantous S
    Int J Mol Sci; 2019 Jul; 20(14):. PubMed ID: 31311175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Split-superpositive GFP reassembly is a fast, efficient, and robust method for detecting protein-protein interactions in vivo.
    Blakeley BD; Chapman AM; McNaughton BR
    Mol Biosyst; 2012 Aug; 8(8):2036-40. PubMed ID: 22692102
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-activated reassembly of split green fluorescent protein.
    Kent KP; Boxer SG
    J Am Chem Soc; 2011 Mar; 133(11):4046-52. PubMed ID: 21351768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Split Fluorescent Protein Variants and Quantitative Analyses of Their Self-Assembly Process.
    Köker T; Fernandez A; Pinaud F
    Sci Rep; 2018 Mar; 8(1):5344. PubMed ID: 29593344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chimeric Autofluorescent Proteins as Photophysical Model System for Multicolor Bimolecular Fluorescence Complementation.
    Peter S; Oven-Krockhaus SZ; Veerabagu M; Rodado VM; Berendzen KW; Meixner AJ; Harter K; Schleifenbaum FE
    J Phys Chem B; 2017 Mar; 121(11):2407-2419. PubMed ID: 28240906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Insight into the Photochemistry of Split Green Fluorescent Proteins: A Unique Role for a His-Tag.
    Deng A; Boxer SG
    J Am Chem Soc; 2018 Jan; 140(1):375-381. PubMed ID: 29193968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation-guided engineering of split GFPs with efficient β-strand photodissociation.
    Shamsudin Y; Walker AR; Jones CM; Martínez TJ; Boxer SG
    Nat Commun; 2023 Nov; 14(1):7401. PubMed ID: 37973981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and implementation of split-GFP-based bimolecular fluorescence complementation (BiFC) assays in yeast.
    Barnard E; McFerran NV; Trudgett A; Nelson J; Timson DJ
    Biochem Soc Trans; 2008 Jun; 36(Pt 3):479-82. PubMed ID: 18481985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances using green and red fluorescent protein variants.
    Müller-Taubenberger A; Anderson KI
    Appl Microbiol Biotechnol; 2007 Nov; 77(1):1-12. PubMed ID: 17704916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibody-Templated Assembly of an RNA Mimic of Green Fluorescent Protein.
    Bertucci A; Porchetta A; Ricci F
    Anal Chem; 2018 Jan; 90(2):1049-1053. PubMed ID: 29131585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence protein complementation in microscopy: applications beyond detecting bi-molecular interactions.
    Avilov SV; Aleksandrova N
    Methods Appl Fluoresc; 2018 Nov; 7(1):012001. PubMed ID: 30457122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational Design of a Split Flavin-Based Fluorescent Reporter.
    Yudenko A; Smolentseva A; Maslov I; Semenov O; Goncharov IM; Nazarenko VV; Maliar NL; Borshchevskiy V; Gordeliy V; Remeeva A; Gushchin I
    ACS Synth Biol; 2021 Jan; 10(1):72-83. PubMed ID: 33325704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering highly stable variants of Corynactis californica green fluorescent proteins.
    Hung LW; Terwilliger TC; Waldo GS; Nguyen HB
    Protein Sci; 2024 Feb; 33(2):e4886. PubMed ID: 38151801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting protein-protein interactions with a green fluorescent protein fragment reassembly trap: scope and mechanism.
    Magliery TJ; Wilson CG; Pan W; Mishler D; Ghosh I; Hamilton AD; Regan L
    J Am Chem Soc; 2005 Jan; 127(1):146-57. PubMed ID: 15631464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring of conformational change in maltose binding protein using split green fluorescent protein.
    Jeong J; Kim SK; Ahn J; Park K; Jeong EJ; Kim M; Chung BH
    Biochem Biophys Res Commun; 2006 Jan; 339(2):647-51. PubMed ID: 16325147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.