These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 30786238)

  • 1. Molecular Mechanisms of Plant Regeneration.
    Ikeuchi M; Favero DS; Sakamoto Y; Iwase A; Coleman D; Rymen B; Sugimoto K
    Annu Rev Plant Biol; 2019 Apr; 70():377-406. PubMed ID: 30786238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant regeneration: cellular origins and molecular mechanisms.
    Ikeuchi M; Ogawa Y; Iwase A; Sugimoto K
    Development; 2016 May; 143(9):1442-51. PubMed ID: 27143753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The hormonal control of regeneration in plants.
    Su YH; Zhang XS
    Curr Top Dev Biol; 2014; 108():35-69. PubMed ID: 24512705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wound signaling of regenerative cell reprogramming.
    Lup SD; Tian X; Xu J; Pérez-Pérez JM
    Plant Sci; 2016 Sep; 250():178-187. PubMed ID: 27457994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WIND1: a key molecular switch for plant cell dedifferentiation.
    Iwase A; Ohme-Takagi M; Sugimoto K
    Plant Signal Behav; 2011 Dec; 6(12):1943-5. PubMed ID: 22112447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wounding Triggers Callus Formation via Dynamic Hormonal and Transcriptional Changes.
    Ikeuchi M; Iwase A; Rymen B; Lambolez A; Kojima M; Takebayashi Y; Heyman J; Watanabe S; Seo M; De Veylder L; Sakakibara H; Sugimoto K
    Plant Physiol; 2017 Nov; 175(3):1158-1174. PubMed ID: 28904073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Gene Regulatory Network for Cellular Reprogramming in Plant Regeneration.
    Ikeuchi M; Shibata M; Rymen B; Iwase A; Bågman AM; Watt L; Coleman D; Favero DS; Takahashi T; Ahnert SE; Brady SM; Sugimoto K
    Plant Cell Physiol; 2018 Apr; 59(4):765-777. PubMed ID: 29462363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WIND1 induces dynamic metabolomic reprogramming during regeneration in Brassica napus.
    Iwase A; Mita K; Favero DS; Mitsuda N; Sasaki R; Kobayshi M; Takebayashi Y; Kojima M; Kusano M; Oikawa A; Sakakibara H; Saito K; Imamura J; Sugimoto K
    Dev Biol; 2018 Oct; 442(1):40-52. PubMed ID: 30026120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How do plants reprogramme the fate of differentiated cells?
    Morinaka H; Sakamoto Y; Iwase A; Sugimoto K
    Curr Opin Plant Biol; 2023 Aug; 74():102377. PubMed ID: 37167921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PROPORZ1, a putative Arabidopsis transcriptional adaptor protein, mediates auxin and cytokinin signals in the control of cell proliferation.
    Sieberer T; Hauser MT; Seifert GJ; Luschnig C
    Curr Biol; 2003 May; 13(10):837-42. PubMed ID: 12747832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small molecules mediate cellular reprogramming across two kingdoms.
    Welsch R; Touraev A; Palme K
    J Exp Bot; 2021 Dec; 72(22):7645-7647. PubMed ID: 34865113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of the wound hormone jasmonate in plant regeneration.
    Zhang G; Liu W; Gu Z; Wu S; E Y; Zhou W; Lin J; Xu L
    J Exp Bot; 2023 Feb; 74(4):1198-1206. PubMed ID: 34966932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root.
    Street IH; Mathews DE; Yamburkenko MV; Sorooshzadeh A; John RT; Swarup R; Bennett MJ; Kieber JJ; Schaller GE
    Development; 2016 Nov; 143(21):3982-3993. PubMed ID: 27697901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular framework for plant regeneration.
    Xu J; Hofhuis H; Heidstra R; Sauer M; Friml J; Scheres B
    Science; 2006 Jan; 311(5759):385-8. PubMed ID: 16424342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple phytohormones promote root hair elongation by regulating a similar set of genes in the root epidermis in Arabidopsis.
    Zhang S; Huang L; Yan A; Liu Y; Liu B; Yu C; Zhang A; Schiefelbein J; Gan Y
    J Exp Bot; 2016 Dec; 67(22):6363-6372. PubMed ID: 27799284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis.
    Iwase A; Mitsuda N; Koyama T; Hiratsu K; Kojima M; Arai T; Inoue Y; Seki M; Sakakibara H; Sugimoto K; Ohme-Takagi M
    Curr Biol; 2011 Mar; 21(6):508-14. PubMed ID: 21396822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. WIND1-based acquisition of regeneration competency in Arabidopsis and rapeseed.
    Iwase A; Mita K; Nonaka S; Ikeuchi M; Koizuka C; Ohnuma M; Ezura H; Imamura J; Sugimoto K
    J Plant Res; 2015 May; 128(3):389-97. PubMed ID: 25810222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The yin-yang of hormones: cytokinin and auxin interactions in plant development.
    Schaller GE; Bishopp A; Kieber JJ
    Plant Cell; 2015 Jan; 27(1):44-63. PubMed ID: 25604447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytokinin controls polarity of PIN1-dependent auxin transport during lateral root organogenesis.
    Marhavý P; Duclercq J; Weller B; Feraru E; Bielach A; Offringa R; Friml J; Schwechheimer C; Murphy A; Benková E
    Curr Biol; 2014 May; 24(9):1031-7. PubMed ID: 24768050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. hoc: An Arabidopsis mutant overproducing cytokinins and expressing high in vitro organogenic capacity.
    Catterou M; Dubois F; Smets R; Vaniet S; Kichey T; Van Onckelen H; Sangwan-Norreel BS; Sangwan RS
    Plant J; 2002 May; 30(3):273-87. PubMed ID: 12000676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.