These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30786630)

  • 1. Effects of Plant Spacing, Inoculation Date, and Peanut Cultivar on Epidemics of Peanut Stem Rot and Tomato Spotted Wilt.
    Sconyers LE; Brenneman TB; Stevenson KL; Mullinix BG
    Plant Dis; 2005 Sep; 89(9):969-974. PubMed ID: 30786630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactive Effects of Planting Date and Cultivar on Tomato Spotted Wilt of Peanut.
    Culbreath AK; Tillman BL; Tubbs RS; Beasley JP; Kemerait RC; Brenneman TB
    Plant Dis; 2010 Jul; 94(7):898-904. PubMed ID: 30743550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Row Pattern, Seeding Rate, and Inoculation Date on Fungicide Efficacy and Development of Peanut Stem Rot.
    Sconyers LE; Brenneman TB; Stevenson KL; Mullinix BG
    Plant Dis; 2007 Mar; 91(3):273-278. PubMed ID: 30780560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epidemiology of spotted wilt disease of peanut caused by Tomato spotted wilt virus in the southeastern U.S.
    Culbreath AK; Srinivasan R
    Virus Res; 2011 Aug; 159(2):101-9. PubMed ID: 21620508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Thrips Density, Mode of Inoculation, and Plant Age on Tomato Spotted Wilt Virus Transmission in Peanut Plants.
    Shrestha A; Sundaraj S; Culbreath AK; Riley DG; Abney MR; Srinivasan R
    Environ Entomol; 2015 Feb; 44(1):136-43. PubMed ID: 26308816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of major QTLs underlying tomato spotted wilt virus resistance in peanut cultivar Florida-EP(TM) '113'.
    Tseng YC; Tillman BL; Peng Z; Wang J
    BMC Genet; 2016 Sep; 17(1):128. PubMed ID: 27600750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of genes differentially expressed during early interactions between the stem rot fungus (Sclerotium rolfsii) and peanut (Arachis hypogaea) cultivars with increasing disease resistance levels.
    Jogi A; Kerry JW; Brenneman TB; Leebens-Mack JH; Gold SE
    Microbiol Res; 2016 Mar; 184():1-12. PubMed ID: 26856448
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three decades of managing Tomato spotted wilt virus in peanut in southeastern United States.
    Srinivasan R; Abney MR; Culbreath AK; Kemerait RC; Tubbs RS; Monfort WS; Pappu HR
    Virus Res; 2017 Sep; 241():203-212. PubMed ID: 28549856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disease and Yield Response of a Stem-rot-resistant and -Susceptible Peanut Cultivar under Varying Fungicide Inputs.
    Standish JR; Culbreath AK; Branch WD; Brenneman TB
    Plant Dis; 2019 Nov; 103(11):2781-2785. PubMed ID: 31469362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field Response of New Peanut Cultivar UF 91108 to Tomato Spotted Wilt Virus.
    Culbreath AK; Todd JW; Gorbet DW; Shokes FM; Pappu HR
    Plant Dis; 1997 Dec; 81(12):1410-1415. PubMed ID: 30861794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors Affecting Mechanical Transmission of Tomato spotted wilt virus to Peanut (Arachis hypogaea).
    Mandal B; Pappu HR; Culbreath AK
    Plant Dis; 2001 Dec; 85(12):1259-1263. PubMed ID: 30831787
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathogenesis of Tomato Spotted Wilt Virus in Peanut Plants Dually Infected with Peanut Mottle Virus.
    Hoffmann K; Geske SM; Moyer JW
    Plant Dis; 1998 Jun; 82(6):610-614. PubMed ID: 30857008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of New Field-Resistant Peanut Cultivars to Twin-Row Pattern or In-Furrow Applications of Phorate for Management of Spotted Wilt.
    Culbreath AK; Tillman BL; Gorbet DW; Holbrook CC; Nischwitz C
    Plant Dis; 2008 Sep; 92(9):1307-1312. PubMed ID: 30769449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential Response of Selected Peanut (Arachis hypogaea) Genotypes to Mechanical Inoculation by Tomato spotted wilt virus.
    Mandal B; Pappu HR; Culbreath AK; Holbrook CC; Gorbet DW; Todd JW
    Plant Dis; 2002 Sep; 86(9):939-944. PubMed ID: 30818552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epidemiology and management of tomato spotted wilt in peanut.
    Culbreath AK; Todd JW; Brown SL
    Annu Rev Phytopathol; 2003; 41():53-75. PubMed ID: 12704217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficacy and Profitability of Insecticide Treatments for Tomato Spotted Wilt Management on Peanut in South Carolina.
    Anco DJ; Thomas JS; Monfort WS
    Plant Dis; 2020 Apr; 104(4):1096-1104. PubMed ID: 32031909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First Report of Botrytis Blight of Peanut Caused by Botrytis cinerea in Georgia.
    Woodward JE; Brenneman TB; Kemerait RC; Culbreath AK; Clark JR
    Plant Dis; 2005 Aug; 89(8):910. PubMed ID: 30786533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incidence of Tomato spotted wilt virus (Bunyaviridae) and Tobacco Thrips in Virginia-Type Peanuts in North Carolina.
    Garcia LE; Brandenburg RL; Bailey JE
    Plant Dis; 2000 Apr; 84(4):459-464. PubMed ID: 30841170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field Evaluation of Tomato spotted wilt virus Resistance in Transgenic Peanut (Arachis hypogaea).
    Yang H; Ozias-Akins P; Culbreath AK; Gorbet DW; Weeks JR; Mandal B; Pappu HR
    Plant Dis; 2004 Mar; 88(3):259-264. PubMed ID: 30812357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Alternatives to an Organophosphate Insecticide with Selected Cultural Practices: Effects on Thrips, Frankliniella fusca, and Incidence of Spotted Wilt in Peanut Farmscapes.
    Marasigan K; Toews M; Kemerait R; Abney MR; Culbreath A; Srinivasan R
    J Econ Entomol; 2018 May; 111(3):1030-1041. PubMed ID: 29635299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.