These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 30786701)

  • 1. Heteroexpression and functional characterization of glucose 6-phosphate dehydrogenase from industrial
    Guo H; Han J; Wu J; Chen H
    J Microbiol Biotechnol; 2019 Apr; 29(4):577-586. PubMed ID: 30786701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the oxidative phase of the pentose phosphate cycle in Aspergillus oryzae (Ahlburg). I. Induction of glucose-6-phosphate dehydrogenase.
    Muiño Blanco T; Cebrian Perez JA; Perez Martos A
    Arch Microbiol; 1983 Oct; 136(1):39-41. PubMed ID: 6418104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and kinetic characterization of hexokinase and glucose-6-phosphate dehydrogenase from Schizosaccharomyces pombe.
    Tsai CS; Chen Q
    Biochem Cell Biol; 1998; 76(1):107-13. PubMed ID: 9666312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cofactor preference of glucose-6-phosphate dehydrogenase from Escherichia coli--modeling the physiological production of reduced cofactors.
    Olavarría K; Valdés D; Cabrera R
    FEBS J; 2012 Jul; 279(13):2296-309. PubMed ID: 22519976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of three enzymatic forms of glucose-6-phosphate dehydrogenase from Aspergillus oryzae.
    Cebrián-Pérez JA; Muiño-Blanco T; Pérez-Martos A; López-Pérez MJ
    Rev Esp Fisiol; 1989 Sep; 45(3):271-6. PubMed ID: 2616874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coenzyme specificity of enzymes in the oxidative pentose phosphate pathway of Gluconobacter oxydans.
    Tonouchi N; Sugiyama M; Yokozeki K
    Biosci Biotechnol Biochem; 2003 Dec; 67(12):2648-51. PubMed ID: 14730146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression and characterization of a cytosolic glucose 6 phosphate dehydrogenase isoform from barley (Hordeum vulgare) roots.
    Castiglia D; Cardi M; Landi S; Cafasso D; Esposito S
    Protein Expr Purif; 2015 Aug; 112():8-14. PubMed ID: 25888782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose-6-phosphate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima: expression of the g6pd gene and characterization of an extremely thermophilic enzyme.
    Hansen T; Schlichting B; Schönheit P
    FEMS Microbiol Lett; 2002 Nov; 216(2):249-53. PubMed ID: 12435510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression, purification and enzymatic characterization of a recombinant Arabian camel Camelus dromedarius glucose-6-phosphate dehydrogenase.
    Saeed H; Ismaeil M; Embaby A; Ataya F; Malik A; Shalaby M; El-Banna S; Ali AAM; Bassiouny K
    Protein Expr Purif; 2018 Feb; 142():88-94. PubMed ID: 26363117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Cloning and Exploration of the Biochemical and Functional Analysis of Recombinant Glucose-6-Phosphate Dehydrogenase from
    Ramírez-Nava EJ; Ortega-Cuellar D; González-Valdez A; Castillo-Rodríguez RA; Ponce-Soto GY; Hernández-Ochoa B; Cárdenas-Rodríguez N; Martínez-Rosas V; Morales-Luna L; Serrano-Posada H; Sierra-Palacios E; Arreguin-Espinosa R; Cuevas-Cruz M; Rocha-Ramírez LM; Pérez de la Cruz V; Marcial-Quino J; Gómez-Manzo S
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31652968
    [No Abstract]   [Full Text] [Related]  

  • 11. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increased NADPH concentration obtained by metabolic engineering of the pentose phosphate pathway in Aspergillus niger.
    R Poulsen B; Nøhr J; Douthwaite S; Hansen LV; Iversen JJ; Visser J; Ruijter GJ
    FEBS J; 2005 Mar; 272(6):1313-25. PubMed ID: 15752350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and properties of NADP-linked glucose-6-phosphate dehydrogenase from Acetobacter hansenii (Acetobacter xylinum).
    Levy HR; Cook C
    Arch Biochem Biophys; 1991 Nov; 291(1):161-7. PubMed ID: 1929428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of four genes in Escherichia coli enables preferential consumption of xylose and secretion of glucose.
    Diaz CAC; Bennett RK; Papoutsakis ET; Antoniewicz MR
    Metab Eng; 2019 Mar; 52():168-177. PubMed ID: 30529131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Stability of glucose 6-phosphate dehydrogenase complexed with its substrate and/or cofactor in aqueous and micellar environment].
    Puchkaev AV; Vlasov AP; Metelitsa DI
    Prikl Biokhim Mikrobiol; 2002; 38(1):44-52. PubMed ID: 11852566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose-6-phosphate dehydrogenase regulation during hypometabolism.
    Ramnanan CJ; Storey KB
    Biochem Biophys Res Commun; 2006 Jan; 339(1):7-16. PubMed ID: 16256936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heteroexpression and biochemical characterization of a glucose-6-phosphate dehydrogenase from oleaginous yeast Yarrowia lipolytica.
    Bian M; Li S; Wei H; Huang S; Zhou F; Zhu Y; Zhu G
    Protein Expr Purif; 2018 Aug; 148():1-8. PubMed ID: 29580928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo.
    Moritz B; Striegel K; De Graaf AA; Sahm H
    Eur J Biochem; 2000 Jun; 267(12):3442-52. PubMed ID: 10848959
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glucose 6-phosphate dehydrogenase from larval Taenia crassiceps (cysticerci): purification and properties.
    Rendón JL; Del Arenal IP; Guevara-Flores A; Mendoza-Hernández G; Pardo JP
    Parasitol Res; 2008 May; 102(6):1351-7. PubMed ID: 18297308
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress responses in alfalfa (Medicago sativa L.) XIX. Transcriptional activation of oxidative pentose phosphate pathway genes at the onset of the isoflavonoid phytoalexin response.
    Fahrendorf T; Ni W; Shorrosh BS; Dixon RA
    Plant Mol Biol; 1995 Aug; 28(5):885-900. PubMed ID: 7640360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.