These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 30786846)
1. Clinical and biochemical characteristics of high-intensity functional training (HIFT) and overtraining syndrome: findings from the EROS study (The EROS-HIFT). Cadegiani FA; Kater CE; Gazola M J Sports Sci; 2019 Jun; 37(11):1296-1307. PubMed ID: 30786846 [TBL] [Abstract][Full Text] [Related]
2. Hormonal response to a non-exercise stress test in athletes with overtraining syndrome: results from the Endocrine and metabolic Responses on Overtraining Syndrome (EROS) - EROS-STRESS. Cadegiani FA; Kater CE J Sci Med Sport; 2018 Jul; 21(7):648-653. PubMed ID: 29157780 [TBL] [Abstract][Full Text] [Related]
3. Basal Hormones and Biochemical Markers as Predictors of Overtraining Syndrome in Male Athletes: The EROS-BASAL Study. Cadegiani FA; Kater CE J Athl Train; 2019 Aug; 54(8):906-914. PubMed ID: 31386577 [TBL] [Abstract][Full Text] [Related]
4. Inter-correlations Among Clinical, Metabolic, and Biochemical Parameters and Their Predictive Value in Healthy and Overtrained Male Athletes: The EROS-CORRELATIONS Study. Cadegiani FA; Kater CE Front Endocrinol (Lausanne); 2019; 10():858. PubMed ID: 31920971 [No Abstract] [Full Text] [Related]
5. Enhancement of hypothalamic-pituitary activity in male athletes: evidence of a novel hormonal mechanism of physical conditioning. Cadegiani FA; Kater CE BMC Endocr Disord; 2019 Nov; 19(1):117. PubMed ID: 31675953 [TBL] [Abstract][Full Text] [Related]
6. Body composition, metabolism, sleep, psychological and eating patterns of overtraining syndrome: Results of the EROS study (EROS-PROFILE). Cadegiani FA; Kater CE J Sports Sci; 2018 Aug; 36(16):1902-1910. PubMed ID: 29313445 [TBL] [Abstract][Full Text] [Related]
7. Hypothalamic-Pituitary-Adrenal (HPA) Axis Functioning in Overtraining Syndrome: Findings from Endocrine and Metabolic Responses on Overtraining Syndrome (EROS)-EROS-HPA Axis. Cadegiani FA; Kater CE Sports Med Open; 2017 Dec; 3(1):45. PubMed ID: 29222606 [TBL] [Abstract][Full Text] [Related]
8. Novel causes and consequences of overtraining syndrome: the EROS-DISRUPTORS study. Cadegiani FA; Kater CE BMC Sports Sci Med Rehabil; 2019; 11():21. PubMed ID: 31548891 [TBL] [Abstract][Full Text] [Related]
9. Eating, Sleep, and Social Patterns as Independent Predictors of Clinical, Metabolic, and Biochemical Behaviors Among Elite Male Athletes: The EROS-PREDICTORS Study. Cadegiani FA; Kater CE Front Endocrinol (Lausanne); 2020; 11():414. PubMed ID: 32670198 [No Abstract] [Full Text] [Related]
10. Novel Markers of Recovery From Overtraining Syndrome: The EROS-LONGITUDINAL Study. Cadegiani FA; Silva PHL; Abrao TCP; Kater CE Int J Sports Physiol Perform; 2021 Aug; 16(8):1175–1184. PubMed ID: 33406484 [TBL] [Abstract][Full Text] [Related]
11. Diagnosis of Overtraining Syndrome: Results of the Endocrine and Metabolic Responses on Overtraining Syndrome Study: EROS-DIAGNOSIS. Cadegiani FA; da Silva PHL; Abrao TCP; Kater CE J Sports Med (Hindawi Publ Corp); 2020; 2020():3937819. PubMed ID: 32373644 [TBL] [Abstract][Full Text] [Related]
13. Novel insights of overtraining syndrome discovered from the EROS study. Cadegiani FA; Kater CE BMJ Open Sport Exerc Med; 2019; 5(1):e000542. PubMed ID: 31297238 [TBL] [Abstract][Full Text] [Related]
14. Hormonal aspects of overtraining syndrome: a systematic review. Cadegiani FA; Kater CE BMC Sports Sci Med Rehabil; 2017; 9():14. PubMed ID: 28785411 [TBL] [Abstract][Full Text] [Related]
15. Effects of Overtraining Status on the Cortisol Awakening Response-Endocrine and Metabolic Responses on Overtraining Syndrome (EROS-CAR). Anderson T; Wideman L; Cadegiani FA; Kater CE Int J Sports Physiol Perform; 2021 Jul; 16(7):965-973. PubMed ID: 33662935 [TBL] [Abstract][Full Text] [Related]
16. Blood hormones as markers of training stress and overtraining. Urhausen A; Gabriel H; Kindermann W Sports Med; 1995 Oct; 20(4):251-76. PubMed ID: 8584849 [TBL] [Abstract][Full Text] [Related]
17. Improving the Diagnosis of Nonfunctional Overreaching and Overtraining Syndrome. Buyse L; Decroix L; Timmermans N; Barbé K; Verrelst R; Meeusen R Med Sci Sports Exerc; 2019 Dec; 51(12):2524-2530. PubMed ID: 31274684 [TBL] [Abstract][Full Text] [Related]
18. A programme based on repeated hypoxia-hyperoxia exposure and light exercise enhances performance in athletes with overtraining syndrome: a pilot study. Susta D; Dudnik E; Glazachev OS Clin Physiol Funct Imaging; 2017 May; 37(3):276-281. PubMed ID: 26443707 [TBL] [Abstract][Full Text] [Related]
19. Altered relationship between R-R interval and R-R interval variability in endurance athletes with overtraining syndrome. Kiviniemi AM; Tulppo MP; Hautala AJ; Vanninen E; Uusitalo AL Scand J Med Sci Sports; 2014 Apr; 24(2):e77-85. PubMed ID: 24024550 [TBL] [Abstract][Full Text] [Related]
20. Plasma irisin and its associations with oxidative stress in athletes suffering from overtraining syndrome. Joro R; Korkmaz A; Lakka TA; Uusitalo ALT; Atalay M Physiol Int; 2020 Dec; 107(4):513-526. PubMed ID: 33393937 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]