BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 30786880)

  • 1. SEQprocess: a modularized and customizable pipeline framework for NGS processing in R package.
    Joo T; Choi JH; Lee JH; Park SE; Jeon Y; Jung SH; Woo HG
    BMC Bioinformatics; 2019 Feb; 20(1):90. PubMed ID: 30786880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. systemPipeR: NGS workflow and report generation environment.
    H Backman TW; Girke T
    BMC Bioinformatics; 2016 Sep; 17():388. PubMed ID: 27650223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CSI NGS Portal: An Online Platform for Automated NGS Data Analysis and Sharing.
    An O; Tan KT; Li Y; Li J; Wu CS; Zhang B; Chen L; Yang H
    Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32481589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DolphinNext: a distributed data processing platform for high throughput genomics.
    Yukselen O; Turkyilmaz O; Ozturk AR; Garber M; Kucukural A
    BMC Genomics; 2020 Apr; 21(1):310. PubMed ID: 32306927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Challenges in exome analysis by LifeScope and its alternative computational pipelines.
    Pranckevičiene E; Rančelis T; Pranculis A; Kučinskas V
    BMC Res Notes; 2015 Sep; 8():421. PubMed ID: 26346699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RUbioSeq+: A multiplatform application that executes parallelized pipelines to analyse next-generation sequencing data.
    Rubio-Camarillo M; López-Fernández H; Gómez-López G; Carro Á; Fernández JM; Torre CF; Fdez-Riverola F; Glez-Peña D
    Comput Methods Programs Biomed; 2017 Jan; 138():73-81. PubMed ID: 27886717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NEAT: a framework for building fully automated NGS pipelines and analyses.
    Schorderet P
    BMC Bioinformatics; 2016 Feb; 17():53. PubMed ID: 26830846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NGSpop: A desktop software that supports population studies by identifying sequence variations from next-generation sequencing data.
    Lee DJ; Kwon T; Lee HJ; Oh YH; Kim JH; Lee TH
    PLoS One; 2022; 17(11):e0260908. PubMed ID: 36395265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NGS_SNPAnalyzer: a desktop software supporting genome projects by identifying and visualizing sequence variations from next-generation sequencing data.
    Lee DJ; Kwon T; Kim CK; Seol YJ; Park DS; Lee TH; Ahn BO
    Genes Genomics; 2020 Nov; 42(11):1311-1317. PubMed ID: 32980993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinformatic data processing pipelines in support of next-generation sequencing-based HIV drug resistance testing: the Winnipeg Consensus.
    Ji H; Enns E; Brumme CJ; Parkin N; Howison M; Lee ER; Capina R; Marinier E; Avila-Rios S; Sandstrom P; Van Domselaar G; Harrigan R; Paredes R; Kantor R; Noguera-Julian M
    J Int AIDS Soc; 2018 Oct; 21(10):e25193. PubMed ID: 30350345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation and assessment of variant calling pipelines for next-generation sequencing.
    Pirooznia M; Kramer M; Parla J; Goes FS; Potash JB; McCombie WR; Zandi PP
    Hum Genomics; 2014 Jul; 8(1):14. PubMed ID: 25078893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of seven SNP calling pipelines for the next-generation sequencing data of chickens.
    Liu J; Shen Q; Bao H
    PLoS One; 2022; 17(1):e0262574. PubMed ID: 35100292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variant callers for next-generation sequencing data: a comparison study.
    Liu X; Han S; Wang Z; Gelernter J; Yang BZ
    PLoS One; 2013; 8(9):e75619. PubMed ID: 24086590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Systematic comparison of germline variant calling pipelines cross multiple next-generation sequencers.
    Chen J; Li X; Zhong H; Meng Y; Du H
    Sci Rep; 2019 Jun; 9(1):9345. PubMed ID: 31249349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-Docklets: virtualization containers for single-step execution of NGS pipelines.
    Kim B; Ali T; Lijeron C; Afgan E; Krampis K
    Gigascience; 2017 Aug; 6(8):1-7. PubMed ID: 28854616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of post-alignment processing in variant discovery from whole exome data.
    Tian S; Yan H; Kalmbach M; Slager SL
    BMC Bioinformatics; 2016 Oct; 17(1):403. PubMed ID: 27716037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NGS-pipe: a flexible, easily extendable and highly configurable framework for NGS analysis.
    Singer J; Ruscheweyh HJ; Hofmann AL; Thurnherr T; Singer F; Toussaint NC; Ng CKY; Piscuoglio S; Beisel C; Christofori G; Dummer R; Hall MN; Krek W; Levesque MP; Manz MG; Moch H; Papassotiropoulos A; Stekhoven DJ; Wild P; Wüst T; Rinn B; Beerenwinkel N
    Bioinformatics; 2018 Jan; 34(1):107-108. PubMed ID: 28968639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive fundamental somatic variant calling and quality management strategies for human cancer genomes.
    He X; Chen S; Li R; Han X; He Z; Yuan D; Zhang S; Duan X; Niu B
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32510555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. AMLVaran: a software approach to implement variant analysis of targeted NGS sequencing data in an oncological care setting.
    Wünsch C; Banck H; Müller-Tidow C; Dugas M
    BMC Med Genomics; 2020 Feb; 13(1):17. PubMed ID: 32019565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Closha: bioinformatics workflow system for the analysis of massive sequencing data.
    Ko G; Kim PG; Yoon J; Han G; Park SJ; Song W; Lee B
    BMC Bioinformatics; 2018 Feb; 19(Suppl 1):43. PubMed ID: 29504905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.