These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 30787290)

  • 21. Fully stretchable textile-based triboelectric nanogenerators with crepe-paper-induced surface microstructures.
    Kim DE; Shin S; Zhang G; Choi D; Jung J
    RSC Adv; 2023 Apr; 13(16):11142-11149. PubMed ID: 37056967
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electroassisted Core-Spun Triboelectric Nanogenerator Fabrics for IntelliSense and Artificial Intelligence Perception.
    Ye C; Yang S; Ren J; Dong S; Cao L; Pei Y; Ling S
    ACS Nano; 2022 Mar; 16(3):4415-4425. PubMed ID: 35238534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing.
    Dong K; Peng X; An J; Wang AC; Luo J; Sun B; Wang J; Wang ZL
    Nat Commun; 2020 Jun; 11(1):2868. PubMed ID: 32513912
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrastable and High-Performance Silk Energy Harvesting Textiles.
    Ye C; Dong S; Ren J; Ling S
    Nanomicro Lett; 2019 Dec; 12(1):12. PubMed ID: 34138051
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On-Skin Triboelectric Nanogenerator and Self-Powered Sensor with Ultrathin Thickness and High Stretchability.
    Chen X; Wu Y; Shao J; Jiang T; Yu A; Xu L; Wang ZL
    Small; 2017 Dec; 13(47):. PubMed ID: 29058800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Wearable Self-Charging Power Textile Based on Flexible Yarn Supercapacitors and Fabric Nanogenerators.
    Pu X; Li L; Liu M; Jiang C; Du C; Zhao Z; Hu W; Wang ZL
    Adv Mater; 2016 Jan; 28(1):98-105. PubMed ID: 26540288
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Machine-Washable Textile Triboelectric Nanogenerators for Effective Human Respiratory Monitoring through Loom Weaving of Metallic Yarns.
    Zhao Z; Yan C; Liu Z; Fu X; Peng LM; Hu Y; Zheng Z
    Adv Mater; 2016 Dec; 28(46):10267-10274. PubMed ID: 27690188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cesium Lead Halide Perovskite Decorated Polyvinylidene Fluoride Nanofibers for Wearable Piezoelectric Nanogenerator Yarns.
    Wu S; Zabihi F; Yeap RY; Darestani MRY; Bahi A; Wan Z; Yang S; Servati P; Ko FK
    ACS Nano; 2023 Jan; 17(2):1022-35. PubMed ID: 36599026
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Large-Scale Production of Highly Stretchable CNT/Cotton/Spandex Composite Yarn for Wearable Applications.
    Cai G; Yang M; Pan J; Cheng D; Xia Z; Wang X; Tang B
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32726-32735. PubMed ID: 30176716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wearable Electricity Generators Fabricated Utilizing Transparent Electronic Textiles Based on Polyester/Ag Nanowires/Graphene Core-Shell Nanocomposites.
    Wu C; Kim TW; Li F; Guo T
    ACS Nano; 2016 Jul; 10(7):6449-57. PubMed ID: 27284809
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wearable and Stretchable Triboelectric Nanogenerator Based on Crumpled Nanofibrous Membranes.
    Qin Z; Yin Y; Zhang W; Li C; Pan K
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12452-12459. PubMed ID: 30860346
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-Powered and Self-Sensing Energy Textile System for Flexible Wearable Applications.
    Du X; Tian M; Sun G; Li Z; Qi X; Zhao H; Zhu S; Qu L
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):55876-55883. PubMed ID: 33269916
    [TBL] [Abstract][Full Text] [Related]  

  • 33. From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles.
    Huang Y; Hu H; Huang Y; Zhu M; Meng W; Liu C; Pei Z; Hao C; Wang Z; Zhi C
    ACS Nano; 2015 May; 9(5):4766-75. PubMed ID: 25842997
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Particle Flow Spinning Mass-Manufactured Stretchable Magnetic Yarn for Self-Powered Mechanical Sensing.
    Liu J; Du Z; Wang Q; Su B; Xia Z
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):2113-2121. PubMed ID: 34968028
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Melding Vapor-Phase Organic Chemistry and Textile Manufacturing To Produce Wearable Electronics.
    Andrew TL; Zhang L; Cheng N; Baima M; Kim JJ; Allison L; Hoxie S
    Acc Chem Res; 2018 Apr; 51(4):850-859. PubMed ID: 29521501
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of Stainless Steel Yarn with Embedded Surface Mounted Light Emitting Diodes.
    Simegnaw AA; Malengier B; Tadesse MG; Van Langenhove L
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454585
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring.
    Yi F; Wang X; Niu S; Li S; Yin Y; Dai K; Zhang G; Lin L; Wen Z; Guo H; Wang J; Yeh MH; Zi Y; Liao Q; You Z; Zhang Y; Wang ZL
    Sci Adv; 2016 Jun; 2(6):e1501624. PubMed ID: 27386560
    [TBL] [Abstract][Full Text] [Related]  

  • 38. All-in-One Shape-Adaptive Self-Charging Power Package for Wearable Electronics.
    Guo H; Yeh MH; Lai YC; Zi Y; Wu C; Wen Z; Hu C; Wang ZL
    ACS Nano; 2016 Nov; 10(11):10580-10588. PubMed ID: 27934070
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Towards Truly Wearable Systems: Optimizing and Scaling Up Wearable Triboelectric Nanogenerators.
    Gunawardhana KRSD; Wanasekara ND; Dharmasena RDIG
    iScience; 2020 Aug; 23(8):101360. PubMed ID: 32738609
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly Stretchable Multifunctional Wearable Devices Based on Conductive Cotton and Wool Fabrics.
    Souri H; Bhattacharyya D
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20845-20853. PubMed ID: 29808668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.