BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30788511)

  • 1. Double autoinhibition mechanism of signal transduction ATPases with numerous domains (STAND) with a tetratricopeptide repeat sensor.
    Lisa MN; Cvirkaite-Krupovic V; Richet E; André-Leroux G; Alzari PM; Haouz A; Danot O
    Nucleic Acids Res; 2019 Apr; 47(7):3795-3810. PubMed ID: 30788511
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dual role for the inducer in signalling by MalT, a signal transduction ATPase with numerous domains (STAND).
    Liu P; Danot O; Richet E
    Mol Microbiol; 2013 Dec; 90(6):1309-23. PubMed ID: 24134781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How 'arm-twisting' by the inducer triggers activation of the MalT transcription factor, a typical signal transduction ATPase with numerous domains (STAND).
    Danot O
    Nucleic Acids Res; 2015 Mar; 43(6):3089-99. PubMed ID: 25740650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved motifs involved in ATP hydrolysis by MalT, a signal transduction ATPase with numerous domains from Escherichia coli.
    Marquenet E; Richet E
    J Bacteriol; 2010 Oct; 192(19):5181-91. PubMed ID: 20693326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The inducer maltotriose binds in the central cavity of the tetratricopeptide-like sensor domain of MalT, a bacterial STAND transcription factor.
    Danot O
    Mol Microbiol; 2010 Aug; 77(3):628-41. PubMed ID: 20545845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wheel of Life, Wheel of Death: A Mechanistic Insight into Signaling by STAND Proteins.
    Danot O; Marquenet E; Vidal-Ingigliardi D; Richet E
    Structure; 2009 Feb; 17(2):172-82. PubMed ID: 19217388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer.
    Leipe DD; Koonin EV; Aravind L
    J Mol Biol; 2004 Oct; 343(1):1-28. PubMed ID: 15381417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How integration of positive and negative regulatory signals by a STAND signaling protein depends on ATP hydrolysis.
    Marquenet E; Richet E
    Mol Cell; 2007 Oct; 28(2):187-99. PubMed ID: 17964259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for RNA translocation by DEAH-box ATPases.
    Hamann F; Enders M; Ficner R
    Nucleic Acids Res; 2019 May; 47(8):4349-4362. PubMed ID: 30828714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for negative regulation of the Escherichia coli maltose system.
    Wu Y; Sun Y; Richet E; Han Z; Chai J
    Nat Commun; 2023 Aug; 14(1):4925. PubMed ID: 37582800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of dimeric SecA, the Escherichia coli preprotein translocase motor.
    Papanikolau Y; Papadovasilaki M; Ravelli RB; McCarthy AA; Cusack S; Economou A; Petratos K
    J Mol Biol; 2007 Mar; 366(5):1545-57. PubMed ID: 17229438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of the WD40 domain of human PRPF19.
    Zhang Y; Li Y; Liang X; Zhu Z; Sun H; He H; Min J; Liao S; Liu Y
    Biochem Biophys Res Commun; 2017 Nov; 493(3):1250-1253. PubMed ID: 28962858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of the SMC head domain: an ABC ATPase with 900 residues antiparallel coiled-coil inserted.
    Löwe J; Cordell SC; van den Ent F
    J Mol Biol; 2001 Feb; 306(1):25-35. PubMed ID: 11178891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two domains of MalT, the activator of the Escherichia coli maltose regulon, bear determinants essential for anti-activation by MalK.
    Richet E; Joly N; Danot O
    J Mol Biol; 2005 Mar; 347(1):1-10. PubMed ID: 15733913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Negative regulation of AAA + ATPase assembly by two component receiver domains: a transcription activation mechanism that is conserved in mesophilic and extremely hyperthermophilic bacteria.
    Doucleff M; Chen B; Maris AE; Wemmer DE; Kondrashkina E; Nixon BT
    J Mol Biol; 2005 Oct; 353(2):242-55. PubMed ID: 16169010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of NLRC4 reveals its autoinhibition mechanism.
    Hu Z; Yan C; Liu P; Huang Z; Ma R; Zhang C; Wang R; Zhang Y; Martinon F; Miao D; Deng H; Wang J; Chang J; Chai J
    Science; 2013 Jul; 341(6142):172-5. PubMed ID: 23765277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching.
    Ye Q; Rosenberg SC; Moeller A; Speir JA; Su TY; Corbett KD
    Elife; 2015 Apr; 4():. PubMed ID: 25918846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. STANDing strong, resistance proteins instigators of plant defence.
    Lukasik E; Takken FL
    Curr Opin Plant Biol; 2009 Aug; 12(4):427-36. PubMed ID: 19394891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleotide-dependent conformational changes and assembly of the AAA ATPase SKD1/VPS4B.
    Inoue M; Kamikubo H; Kataoka M; Kato R; Yoshimori T; Wakatsuki S; Kawasaki M
    Traffic; 2008 Dec; 9(12):2180-9. PubMed ID: 18796009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanism of the RNA helicase DHX37 and its activation by UTP14A in ribosome biogenesis.
    Boneberg FM; Brandmann T; Kobel L; van den Heuvel J; Bargsten K; Bammert L; Kutay U; Jinek M
    RNA; 2019 Jun; 25(6):685-701. PubMed ID: 30910870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.