These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 30788606)
21. Interaction anisotropy and the KPZ to KPZQ transition in particle deposition at the edges of drying drops. Dias CS; Yunker PJ; Yodh AG; Araújo NAM; Telo da Gama MM Soft Matter; 2018 Mar; 14(10):1903-1907. PubMed ID: 29465724 [TBL] [Abstract][Full Text] [Related]
22. Multi-axis alignment of Rod-like cellulose nanocrystals in drying droplets. Pritchard CQ; Navarro F; Roman M; Bortner MJ J Colloid Interface Sci; 2021 Dec; 603():450-458. PubMed ID: 34214721 [TBL] [Abstract][Full Text] [Related]
23. Flow regime and deposition pattern of evaporating binary mixture droplet suspended with particles. Zhong X; Duan F Eur Phys J E Soft Matter; 2016 Feb; 39(2):18. PubMed ID: 26920521 [TBL] [Abstract][Full Text] [Related]
24. Magnetophoretic Control of Diamagnetic Particles Inside an Evaporating Droplet. Saroj SK; Panigrahi PK Langmuir; 2021 Dec; 37(51):14950-14967. PubMed ID: 34910880 [TBL] [Abstract][Full Text] [Related]
25. Fluid flow and particle dynamics inside an evaporating droplet containing live bacteria displaying chemotaxis. Thokchom AK; Swaminathan R; Singh A Langmuir; 2014 Oct; 30(41):12144-53. PubMed ID: 25229613 [TBL] [Abstract][Full Text] [Related]
26. Overcoming the "coffee-stain" effect by compositional Marangoni-flow-assisted drop-drying. Majumder M; Rendall CS; Eukel JA; Wang JY; Behabtu N; Pint CL; Liu TY; Orbaek AW; Mirri F; Nam J; Barron AR; Hauge RH; Schmidt HK; Pasquali M J Phys Chem B; 2012 Jun; 116(22):6536-42. PubMed ID: 22587569 [TBL] [Abstract][Full Text] [Related]
27. Transport and retention of colloids in porous media: does shape really matter? Seymour MB; Chen G; Su C; Li Y Environ Sci Technol; 2013 Aug; 47(15):8391-8. PubMed ID: 23822811 [TBL] [Abstract][Full Text] [Related]
28. DC field coupled evaporation of a sessile gold nanofluid droplet. Zaibudeen AW; Bandyopadhyay R Soft Matter; 2021 Nov; 17(45):10294-10300. PubMed ID: 34782898 [TBL] [Abstract][Full Text] [Related]
29. Minimal size of coffee ring structure. Shen X; Ho CM; Wong TS J Phys Chem B; 2010 Apr; 114(16):5269-74. PubMed ID: 20353247 [TBL] [Abstract][Full Text] [Related]
30. Surfactant-mediated control of colloid pattern assembly and attachment strength in evaporating droplets. Morales VL; Parlange JY; Wu M; Pérez-Reche FJ; Zhang W; Sang W; Steenhuis TS Langmuir; 2013 Feb; 29(6):1831-40. PubMed ID: 23327491 [TBL] [Abstract][Full Text] [Related]
31. Evaporation of Sessile Droplets Laden with Particles and Insoluble Surfactants. Karapetsas G; Chandra Sahu K; Matar OK Langmuir; 2016 Jul; 32(27):6871-81. PubMed ID: 27300638 [TBL] [Abstract][Full Text] [Related]
32. Three-dimensional Monte Carlo model of the coffee-ring effect in evaporating colloidal droplets. Crivoi A; Duan F Sci Rep; 2014 Mar; 4():4310. PubMed ID: 24603647 [TBL] [Abstract][Full Text] [Related]
33. Evaporating droplets on oil-wetted surfaces: Suppression of the coffee-stain effect. Li Y; Diddens C; Segers T; Wijshoff H; Versluis M; Lohse D Proc Natl Acad Sci U S A; 2020 Jul; 117(29):16756-16763. PubMed ID: 32616571 [TBL] [Abstract][Full Text] [Related]
34. Contact angles of microellipsoids at fluid interfaces. Coertjens S; Moldenaers P; Vermant J; Isa L Langmuir; 2014 Apr; 30(15):4289-300. PubMed ID: 24720442 [TBL] [Abstract][Full Text] [Related]
35. Rate-dependent interface capture beyond the coffee-ring effect. Li Y; Yang Q; Li M; Song Y Sci Rep; 2016 Apr; 6():24628. PubMed ID: 27090820 [TBL] [Abstract][Full Text] [Related]
36. Reversing Coffee-Ring Effect by Laser-Induced Differential Evaporation. Yen TM; Fu X; Wei T; Nayak RU; Shi Y; Lo YH Sci Rep; 2018 Feb; 8(1):3157. PubMed ID: 29453347 [TBL] [Abstract][Full Text] [Related]
37. Altering the coffee-ring effect by adding a surfactant-like viscous polymer solution. Seo C; Jang D; Chae J; Shin S Sci Rep; 2017 Mar; 7(1):500. PubMed ID: 28356553 [TBL] [Abstract][Full Text] [Related]
38. Structural transitions in a ring stain created at the contact line of evaporating nanosuspension sessile drops. Askounis A; Sefiane K; Koutsos V; Shanahan ME Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012301. PubMed ID: 23410325 [TBL] [Abstract][Full Text] [Related]
39. Capillary assembly of microscale ellipsoidal, cuboidal, and spherical particles at interfaces. Dasgupta S; Katava M; Faraj M; Auth T; Gompper G Langmuir; 2014 Oct; 30(40):11873-82. PubMed ID: 25226046 [TBL] [Abstract][Full Text] [Related]
40. Effect of Gelation on the Colloidal Deposition of Cellulose Nanocrystal Films. Gençer A; Van Rie J; Lombardo S; Kang K; Thielemans W Biomacromolecules; 2018 Aug; 19(8):3233-3243. PubMed ID: 29953209 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]