These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 30788689)
1. Analysis of an Epidemic System with Two Response Delays in Media Impact Function. Song P; Xiao Y Bull Math Biol; 2019 May; 81(5):1582-1612. PubMed ID: 30788689 [TBL] [Abstract][Full Text] [Related]
2. SIRC epidemic model with cross-immunity and multiple time delays. Goel S; Bhatia SK; Tripathi JP; Bugalia S; Rana M; Bajiya VP J Math Biol; 2023 Aug; 87(3):42. PubMed ID: 37573266 [TBL] [Abstract][Full Text] [Related]
3. Global hopf bifurcation of a delayed equation describing the lag effect of media impact on the spread of infectious disease. Song P; Xiao Y J Math Biol; 2018 Apr; 76(5):1249-1267. PubMed ID: 28852830 [TBL] [Abstract][Full Text] [Related]
4. Global Hopf bifurcation analysis of an susceptible-infective-removed epidemic model incorporating media coverage with time delay. Zhao H; Zhao M J Biol Dyn; 2017 Dec; 11(1):8-24. PubMed ID: 27627694 [TBL] [Abstract][Full Text] [Related]
5. A deterministic time-delayed SIR epidemic model: mathematical modeling and analysis. Kumar A; Goel K; Nilam Theory Biosci; 2020 Feb; 139(1):67-76. PubMed ID: 31493204 [TBL] [Abstract][Full Text] [Related]
6. Analysis of Dengue Transmission Dynamic Model by Stability and Hopf Bifurcation with Two-Time Delays. Murugadoss PR; Ambalarajan V; Sivakumar V; Dhandapani PB; Baleanu D Front Biosci (Landmark Ed); 2023 Jun; 28(6):117. PubMed ID: 37395028 [TBL] [Abstract][Full Text] [Related]
7. Mathematical modeling of intervention and low medical resource availability with delays: Applications to COVID-19 outbreaks in Spain and Italy. Bugalia S; Tripathi JP; Wang H Math Biosci Eng; 2021 Jun; 18(5):5865-5920. PubMed ID: 34517515 [TBL] [Abstract][Full Text] [Related]
8. Global stability properties of a class of renewal epidemic models. Meehan MT; Cocks DG; Müller J; McBryde ES J Math Biol; 2019 May; 78(6):1713-1725. PubMed ID: 30737545 [TBL] [Abstract][Full Text] [Related]
9. A periodic SEIRS epidemic model with a time-dependent latent period. Li F; Zhao XQ J Math Biol; 2019 Apr; 78(5):1553-1579. PubMed ID: 30607509 [TBL] [Abstract][Full Text] [Related]
10. The effect of sexual transmission on Zika virus dynamics. Saad-Roy CM; Ma J; van den Driessche P J Math Biol; 2018 Dec; 77(6-7):1917-1941. PubMed ID: 29696377 [TBL] [Abstract][Full Text] [Related]
11. A mathematical and numerical study of a SIR epidemic model with time delay, nonlinear incidence and treatment rates. Goel K; Nilam Theory Biosci; 2019 Nov; 138(2):203-213. PubMed ID: 30666514 [TBL] [Abstract][Full Text] [Related]
12. Bifurcation analysis of a pair-wise epidemic model on adaptive networks. Lu JN; Zhang XG Math Biosci Eng; 2019 Apr; 16(4):2973-2989. PubMed ID: 31137246 [TBL] [Abstract][Full Text] [Related]
13. Stability switches, periodic oscillations and global stability in an infectious disease model with multiple time delays. Kumar A; Takeuchi Y; Srivastava PK Math Biosci Eng; 2023 Apr; 20(6):11000-11032. PubMed ID: 37322969 [TBL] [Abstract][Full Text] [Related]
14. An SEI infection model incorporating media impact. Lu X; Wang S; Liu S; Li J Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1317-1335. PubMed ID: 29161863 [TBL] [Abstract][Full Text] [Related]
15. Stability and Hopf bifurcation of an SIR epidemic model with density-dependent transmission and Allee effect. Lin X; Liu H; Han X; Wei Y Math Biosci Eng; 2023 Jan; 20(2):2750-2775. PubMed ID: 36899556 [TBL] [Abstract][Full Text] [Related]
16. Global dynamics of an immunosuppressive infection model with stage structure. Shu HY; Xu WX; Hao ZH Math Biosci Eng; 2020 Jan; 17(3):2082-2102. PubMed ID: 32233525 [TBL] [Abstract][Full Text] [Related]
17. Analysis of Dynamics of Recurrent Epidemics: Periodic or Non-periodic. Cao H; Yan D; Zhang S; Wang X Bull Math Biol; 2019 Dec; 81(12):4889-4907. PubMed ID: 31264135 [TBL] [Abstract][Full Text] [Related]
18. Hopf bifurcation in a chronological age-structured SIR epidemic model with age-dependent infectivity. Kuniya T; Inaba H Math Biosci Eng; 2023 Jun; 20(7):13036-13060. PubMed ID: 37501477 [TBL] [Abstract][Full Text] [Related]
19. Stability and bifurcations in a discrete-time epidemic model with vaccination and vital dynamics. Parsamanesh M; Erfanian M; Mehrshad S BMC Bioinformatics; 2020 Nov; 21(1):525. PubMed ID: 33198622 [TBL] [Abstract][Full Text] [Related]
20. Mathematical Analysis of the Transmission Dynamics of HIV Syphilis Co-infection in the Presence of Treatment for Syphilis. Nwankwo A; Okuonghae D Bull Math Biol; 2018 Mar; 80(3):437-492. PubMed ID: 29282597 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]