These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 30788769)
1. Comparative sequence and methylation analysis of chloroplast and amyloplast genomes from rice. Muniandy K; Tan MH; Song BK; Ayub Q; Rahman S Plant Mol Biol; 2019 May; 100(1-2):33-46. PubMed ID: 30788769 [TBL] [Abstract][Full Text] [Related]
2. Cytosine methylation of rice mitochondrial DNA from grain and leaf tissues. Muniandy K; Tan MH; Shehnaz S; Song BK; Ayub Q; Rahman S Planta; 2020 Feb; 251(2):57. PubMed ID: 32008119 [TBL] [Abstract][Full Text] [Related]
3. Genome-wide analysis of plastid gene expression in potato leaf chloroplasts and tuber amyloplasts: transcriptional and posttranscriptional control. Valkov VT; Scotti N; Kahlau S; Maclean D; Grillo S; Gray JC; Bock R; Cardi T Plant Physiol; 2009 Aug; 150(4):2030-44. PubMed ID: 19493969 [TBL] [Abstract][Full Text] [Related]
4. Abundance of plastid DNA insertions in nuclear genomes of rice and Arabidopsis. Shahmuradov IA; Akbarova YY; Solovyev VV; Aliyev JA Plant Mol Biol; 2003 Jul; 52(5):923-34. PubMed ID: 14558655 [TBL] [Abstract][Full Text] [Related]
5. Chloroplast DNA insertions into the nuclear genome of rice: the genes, sites and ages of insertion involved. Guo X; Ruan S; Hu W; Cai D; Fan L Funct Integr Genomics; 2008 May; 8(2):101-8. PubMed ID: 17994302 [TBL] [Abstract][Full Text] [Related]
6. The rice nuclear genome continuously integrates, shuffles, and eliminates the chloroplast genome to cause chloroplast-nuclear DNA flux. Matsuo M; Ito Y; Yamauchi R; Obokata J Plant Cell; 2005 Mar; 17(3):665-75. PubMed ID: 15705954 [TBL] [Abstract][Full Text] [Related]
7. The DnaJ OsDjA7/8 is essential for chloroplast development in rice (Oryza sativa). Zhu X; Liang S; Yin J; Yuan C; Wang J; Li W; He M; Wang J; Chen W; Ma B; Wang Y; Qin P; Li S; Chen X Gene; 2015 Dec; 574(1):11-9. PubMed ID: 26210810 [TBL] [Abstract][Full Text] [Related]
8. The complete nucleotide sequence of wild rice (Oryza nivara) chloroplast genome: first genome wide comparative sequence analysis of wild and cultivated rice. Shahid Masood M; Nishikawa T; Fukuoka S; Njenga PK; Tsudzuki T; Kadowaki K Gene; 2004 Sep; 340(1):133-9. PubMed ID: 15556301 [TBL] [Abstract][Full Text] [Related]
9. Single-point Mutation of an Histidine-aspartic Domain-containing Gene involving in Chloroplast Ribosome Biogenesis Leads to White Fine Stripe Leaf in Rice. Ge C; Wang L; Ye W; Wu L; Cui Y; Chen P; Pan J; Zhang D; Hu J; Zeng D; Dong G; Qian Q; Guo L; Xue D Sci Rep; 2017 Jun; 7(1):3298. PubMed ID: 28607371 [TBL] [Abstract][Full Text] [Related]
10. Establishment of monitoring methods for autophagy in rice reveals autophagic recycling of chloroplasts and root plastids during energy limitation. Izumi M; Hidema J; Wada S; Kondo E; Kurusu T; Kuchitsu K; Makino A; Ishida H Plant Physiol; 2015 Apr; 167(4):1307-20. PubMed ID: 25717038 [TBL] [Abstract][Full Text] [Related]
11. Integrative analysis of chloroplast DNA methylation in a marine alga-Saccharina japonica. Teng L; Han W; Fan X; Zhang X; Xu D; Wang Y; Rahman S; Pellegrini M; Mock T; Ye N Plant Mol Biol; 2021 Apr; 105(6):611-623. PubMed ID: 33528753 [TBL] [Abstract][Full Text] [Related]
12. Amyloplast division progresses simultaneously at multiple sites in the endosperm of rice. Yun MS; Kawagoe Y Plant Cell Physiol; 2009 Sep; 50(9):1617-26. PubMed ID: 19622530 [TBL] [Abstract][Full Text] [Related]
13. A plastid protein NUS1 is essential for build-up of the genetic system for early chloroplast development under cold stress conditions. Kusumi K; Sakata C; Nakamura T; Kawasaki S; Yoshimura A; Iba K Plant J; 2011 Dec; 68(6):1039-50. PubMed ID: 21981410 [TBL] [Abstract][Full Text] [Related]
14. Importance of the rice TCD9 encoding α subunit of chaperonin protein 60 (Cpn60α) for the chloroplast development during the early leaf stage. Jiang Q; Mei J; Gong XD; Xu JL; Zhang JH; Teng S; Lin DZ; Dong YJ Plant Sci; 2014 Feb; 215-216():172-9. PubMed ID: 24388528 [TBL] [Abstract][Full Text] [Related]
15. Rice Lin D; Jiang Q; Ma X; Zheng K; Gong X; Teng S; Xu J; Dong Y G3 (Bethesda); 2018 Jan; 8(1):253-263. PubMed ID: 29162684 [TBL] [Abstract][Full Text] [Related]
16. Identification and Characterization of a Plastidic Adenine Nucleotide Uniporter (OsBT1-3) Required for Chloroplast Development in the Early Leaf Stage of Rice. Hu D; Li Y; Jin W; Gong H; He Q; Li Y Sci Rep; 2017 Jan; 7():41355. PubMed ID: 28134341 [TBL] [Abstract][Full Text] [Related]
17. Chloroplast DNA variability in wild and cultivated rice (Oryza spp.) revealed by polymorphic chloroplast simple sequence repeats. Provan J; Corbett G; McNicol JW; Powell W Genome; 1997 Feb; 40(1):104-10. PubMed ID: 9061917 [TBL] [Abstract][Full Text] [Related]
18. Ectopic overexpression of the transcription factor OsGLK1 induces chloroplast development in non-green rice cells. Nakamura H; Muramatsu M; Hakata M; Ueno O; Nagamura Y; Hirochika H; Takano M; Ichikawa H Plant Cell Physiol; 2009 Nov; 50(11):1933-49. PubMed ID: 19808806 [TBL] [Abstract][Full Text] [Related]
19. Mutational decay and age of chloroplast and mitochondrial genomes transferred recently to angiosperm nuclear chromosomes. Huang CY; Grünheit N; Ahmadinejad N; Timmis JN; Martin W Plant Physiol; 2005 Jul; 138(3):1723-33. PubMed ID: 15951485 [TBL] [Abstract][Full Text] [Related]
20. ENLARGED STARCH GRAIN1 affects amyloplast development and starch biosynthesis in rice endosperm. Wang R; Ren Y; Yan H; Teng X; Zhu X; Wang Y; Zhang X; Guo X; Lin Q; Cheng Z; Lei C; Wang J; Jiang L; Wang Y; Wan J Plant Sci; 2021 Apr; 305():110831. PubMed ID: 33691965 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]