These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 30788959)

  • 21. Band gap engineering of NaTaO3 using density functional theory: a charge compensated codoping strategy.
    Modak B; Srinivasu K; Ghosh SK
    Phys Chem Chem Phys; 2014 Aug; 16(32):17116-24. PubMed ID: 25007948
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Band structure engineering of anatase TiO2 by metal-assisted P-O coupling.
    Wang J; Meng Q; Huang J; Li Q; Yang J
    J Chem Phys; 2014 May; 140(17):174705. PubMed ID: 24811653
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Origin of Charge Trapping in TiO
    Gillespie PNO; Martsinovich N
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):31909-31922. PubMed ID: 31385493
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Constructing anatase TiO
    Bi X; Du G; Kalam A; Sun D; Zhao W; Yu Y; Su Q; Xu B; Al-Sehemi AG
    J Colloid Interface Sci; 2021 Nov; 601():346-354. PubMed ID: 34087595
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantum dynamics origin of high photocatalytic activity of mixed-phase anatase/rutile TiO
    Wei Y; Tokina MV; Benderskii AV; Zhou Z; Long R; Prezhdo OV
    J Chem Phys; 2020 Jul; 153(4):044706. PubMed ID: 32752673
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adsorption and solar light decomposition of acetone on anatase TiO2 and niobium doped TiO2 thin films.
    Mattsson A; Leideborg M; Larsson K; Westin G; Osterlund L
    J Phys Chem B; 2006 Jan; 110(3):1210-20. PubMed ID: 16471666
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Density functional theory calculations of copper-doped rutile crystals: Local structural, electronic, optical, and electron paramagnetic resonance properties.
    Yu XY; Wu SY; Shen GQ; Yan L; Wei ZT; Li XY
    Magn Reson Chem; 2022 Jan; 60(1):104-112. PubMed ID: 34212405
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploring the Role of La Codoping beyond Charge Compensation for Enhanced Hydrogen Evolution by Rh-SrTiO3.
    Modak B; Ghosh SK
    J Phys Chem B; 2015 Aug; 119(34):11089-98. PubMed ID: 26125518
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of defects on Mo-doped TiO2 by first-principles studies.
    Yu X; Hou T; Sun X; Li Y
    Chemphyschem; 2012 Apr; 13(6):1514-21. PubMed ID: 22411783
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modification mechanism of praseodymium doping for the photocatalytic performance of TiO2: a combined experimental and theoretical study.
    Duan ZG; Zhao ZY; Shi QN
    Phys Chem Chem Phys; 2015 Jul; 17(29):19087-95. PubMed ID: 26130404
    [TBL] [Abstract][Full Text] [Related]  

  • 31. First-principles study on transition metal-doped anatase TiO2.
    Wang Y; Zhang R; Li J; Li L; Lin S
    Nanoscale Res Lett; 2014 Jan; 9(1):46. PubMed ID: 24472374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Codoping synergistic effects in N-doped SrTiO(3) for higher energy conversion efficiency.
    Wei W; Dai Y; Guo M; Yu L; Jin H; Han S; Huang B
    Phys Chem Chem Phys; 2010 Jul; 12(27):7612-9. PubMed ID: 20526492
    [TBL] [Abstract][Full Text] [Related]  

  • 33. N-Promoted Ru
    Luo Z; Wang Z; Li J; Yang K; Zhou G
    Phys Chem Chem Phys; 2020 May; 22(20):11392-11399. PubMed ID: 32374318
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Understanding electronic and optical properties of anatase TiO2 photocatalysts co-doped with nitrogen and transition metals.
    Meng Q; Wang T; Liu E; Ma X; Ge Q; Gong J
    Phys Chem Chem Phys; 2013 Jun; 15(24):9549-61. PubMed ID: 23652827
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spectroscopic properties of doped and defective semiconducting oxides from hybrid density functional calculations.
    Di Valentin C; Pacchioni G
    Acc Chem Res; 2014 Nov; 47(11):3233-41. PubMed ID: 24828320
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DFT Investigation of Substitutional and Interstitial Nitrogen-Doping Effects on a ZnO(100)-TiO
    Ritacco I; Sacco O; Caporaso L; Camellone MF
    J Phys Chem C Nanomater Interfaces; 2022 Feb; 126(6):3180-3193. PubMed ID: 36844196
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theoretical study of N-doped TiO2 rutile crystals.
    Yang K; Dai Y; Huang B; Han S
    J Phys Chem B; 2006 Nov; 110(47):24011-4. PubMed ID: 17125371
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probability of Two-Step Photoexcitation of Electron from Valence Band to Conduction Band through Doping Level in TiO
    Nishikawa M; Shiroishi W; Honghao H; Suizu H; Nagai H; Saito N
    J Phys Chem A; 2017 Aug; 121(32):5991-5997. PubMed ID: 28738679
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental and theoretical study of the electronic properties of Cu-doped anatase TiO2.
    Navas J; Sánchez-Coronilla A; Aguilar T; Hernández NC; de los Santos DM; Sánchez-Márquez J; Zorrilla D; Fernández-Lorenzo C; Alcántara R; Martín-Calleja J
    Phys Chem Chem Phys; 2014 Feb; 16(8):3835-45. PubMed ID: 24434807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nb-doped CaO: an efficient electron donor system.
    Prada S; Giordano L; Pacchioni G
    J Phys Condens Matter; 2014 Aug; 26(31):315004. PubMed ID: 24935643
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.