BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30789254)

  • 21. Selection experiments reveal trade-offs between swimming and twitching motilities in Pseudomonas aeruginosa.
    Taylor TB; Buckling A
    Evolution; 2011 Nov; 65(11):3060-9. PubMed ID: 22023574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deconvoluting the effects of surface chemistry and nanoscale topography: Pseudomonas aeruginosa biofilm nucleation on Si-based substrates.
    Zhang J; Huang J; Say C; Dorit RL; Queeney KT
    J Colloid Interface Sci; 2018 Jun; 519():203-213. PubMed ID: 29500992
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry.
    Epstein AK; Hochbaum AI; Kim P; Aizenberg J
    Nanotechnology; 2011 Dec; 22(49):494007. PubMed ID: 22101439
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of rhamnolipids and shear on initial attachment of Pseudomonas aeruginosa PAO1 in glass flow chambers.
    Raya A; Sodagari M; Pinzon NM; He X; Zhang Newby BM; Ju LK
    Environ Sci Pollut Res Int; 2010 Nov; 17(9):1529-38. PubMed ID: 20509051
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A nanoscale characterization of the interaction of a novel alginate oligomer with the cell surface and motility of Pseudomonas aeruginosa.
    Powell LC; Pritchard MF; Emanuel C; Onsøyen E; Rye PD; Wright CJ; Hill KE; Thomas DW
    Am J Respir Cell Mol Biol; 2014 Mar; 50(3):483-92. PubMed ID: 24074505
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Host cell surfaces induce a Type IV pili-dependent alteration of bacterial swimming.
    Golovkine G; Lemelle L; Burny C; Vaillant C; Palierne JF; Place C; Huber P
    Sci Rep; 2016 Dec; 6():38950. PubMed ID: 27966607
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Type IV pili interactions promote intercellular association and moderate swarming of Pseudomonas aeruginosa.
    Anyan ME; Amiri A; Harvey CW; Tierra G; Morales-Soto N; Driscoll CM; Alber MS; Shrout JD
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):18013-8. PubMed ID: 25468980
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bacteria use type IV pili to walk upright and detach from surfaces.
    Gibiansky ML; Conrad JC; Jin F; Gordon VD; Motto DA; Mathewson MA; Stopka WG; Zelasko DC; Shrout JD; Wong GC
    Science; 2010 Oct; 330(6001):197. PubMed ID: 20929769
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Emergence of complex behavior in pili-based motility in early stages of P. aeruginosa surface adaptation.
    Brill-Karniely Y; Jin F; Wong GC; Frenkel D; Dobnikar J
    Sci Rep; 2017 Apr; 7():45467. PubMed ID: 28393835
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Colonization, competition, and dispersal of pathogens in fluid flow networks.
    Siryaporn A; Kim MK; Shen Y; Stone HA; Gitai Z
    Curr Biol; 2015 May; 25(9):1201-7. PubMed ID: 25843031
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of PslG on the Surface Movement of Pseudomonas aeruginosa.
    Zhang J; He J; Zhai C; Ma LZ; Gu L; Zhao K
    Appl Environ Microbiol; 2018 Jul; 84(13):. PubMed ID: 29728385
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adaptation and diversification in virulence factors among urinary catheter-associated Pseudomonas aeruginosa isolates.
    Vipin C; Mujeeburahiman M; Arun AB; Ashwini P; Mangesh SV; Rekha PD
    J Appl Microbiol; 2019 Feb; 126(2):641-650. PubMed ID: 30372578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exposure to low doses of UVA increases biofilm formation in Pseudomonas aeruginosa.
    Pezzoni M; Pizarro RA; Costa CS
    Biofouling; 2018 Jul; 34(6):673-684. PubMed ID: 30185068
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of clinically relevant model bacterial strains of Pseudomonas aeruginosa for anti-biofilm testing of materials.
    Rzhepishevska O; Limanska N; Galkin M; Lacoma A; Lundquist M; Sokol D; Hakobyan S; Sjöstedt A; Prat C; Ramstedt M
    Acta Biomater; 2018 Aug; 76():99-107. PubMed ID: 29902594
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanostructured multifunctional surface with antireflective and antimicrobial characteristics.
    Kim S; Jung UT; Kim SK; Lee JH; Choi HS; Kim CS; Jeong MY
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):326-31. PubMed ID: 25560094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PEGDMA-Based Pillar-Shape Nanostructured Antibacterial Films Having Mechanical Robustness.
    Kim HK; Cho YS; Park HH
    ACS Appl Bio Mater; 2022 Jun; 5(6):3006-3012. PubMed ID: 35609304
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unveiling the early events of Pseudomonas aeruginosa adaptation in cystic fibrosis airway environment using a long-term in vitro maintenance.
    Sousa AM; Monteiro R; Pereira MO
    Int J Med Microbiol; 2018 Dec; 308(8):1053-1064. PubMed ID: 30377031
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pseudomonas aeruginosa twitching motility: type IV pili in action.
    Burrows LL
    Annu Rev Microbiol; 2012; 66():493-520. PubMed ID: 22746331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of ginseng on Pseudomonas aeruginosa motility and biofilm formation.
    Wu H; Lee B; Yang L; Wang H; Givskov M; Molin S; Høiby N; Song Z
    FEMS Immunol Med Microbiol; 2011 Jun; 62(1):49-56. PubMed ID: 21303421
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm.
    Tripathi S; Champagne D; Tufenkji N
    Environ Sci Technol; 2012 Jul; 46(13):6942-9. PubMed ID: 22148225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.