These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 30789344)

  • 1. Activation mechanism of ATP-sensitive K
    Puljung M; Vedovato N; Usher S; Ashcroft F
    Elife; 2019 Feb; 8():. PubMed ID: 30789344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP binding without hydrolysis switches sulfonylurea receptor 1 (SUR1) to outward-facing conformations that activate K
    Sikimic J; McMillen TS; Bleile C; Dastvan F; Quast U; Krippeit-Drews P; Drews G; Bryan J
    J Biol Chem; 2019 Mar; 294(10):3707-3719. PubMed ID: 30587573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleotide inhibition of the pancreatic ATP-sensitive K+ channel explored with patch-clamp fluorometry.
    Usher SG; Ashcroft FM; Puljung MC
    Elife; 2020 Jan; 9():. PubMed ID: 31909710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular structure of human KATP in complex with ATP and ADP.
    Lee KPK; Chen J; MacKinnon R
    Elife; 2017 Dec; 6():. PubMed ID: 29286281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. N-terminal transmembrane domain of SUR1 controls gating of Kir6.2 by modulating channel sensitivity to PIP2.
    Pratt EB; Tewson P; Bruederle CE; Skach WR; Shyng SL
    J Gen Physiol; 2011 Mar; 137(3):299-314. PubMed ID: 21321069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional dissection of KATP channel structures reveals the importance of a conserved interface.
    Yang Y; Chen L
    Structure; 2024 Feb; 32(2):168-176.e2. PubMed ID: 38101402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechano-sensitivity of cardiac ATP-sensitive potassium channels is mediated by intrinsic MgATPase activity.
    Fatehi M; Carter CC; Youssef N; Light PE
    J Mol Cell Cardiol; 2017 Jul; 108():34-41. PubMed ID: 28483598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of KATP channel expression and activity by the SUR1 nucleotide binding fold 1.
    Masia R; Caputa G; Nichols CG
    Channels (Austin); 2007; 1(4):315-23. PubMed ID: 18708750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand binding and conformational changes of SUR1 subunit in pancreatic ATP-sensitive potassium channels.
    Wu JX; Ding D; Wang M; Kang Y; Zeng X; Chen L
    Protein Cell; 2018 Jun; 9(6):553-567. PubMed ID: 29594720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sulfonylureas suppress the stimulatory action of Mg-nucleotides on Kir6.2/SUR1 but not Kir6.2/SUR2A KATP channels: a mechanistic study.
    Proks P; de Wet H; Ashcroft FM
    J Gen Physiol; 2014 Nov; 144(5):469-86. PubMed ID: 25348414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity of KATP channels to cellular metabolic disorders and the underlying structural basis.
    Li CG; Cui WY; Wang H
    Acta Pharmacol Sin; 2016 Jan; 37(1):134-42. PubMed ID: 26725741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the C-terminus of SUR in the differential regulation of β-cell and cardiac K
    Vedovato N; Rorsman O; Hennis K; Ashcroft FM; Proks P
    J Physiol; 2018 Dec; 596(24):6205-6217. PubMed ID: 30179258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of KATP hyperactivity and sulfonylurea tolerance due to a diabetogenic mutation in L0 helix of sulfonylurea receptor 1 (ABCC8).
    Babenko AP; Vaxillaire M
    FEBS Lett; 2011 Nov; 585(22):3555-9. PubMed ID: 22020219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryo-electron microscopy structures and progress toward a dynamic understanding of K
    Puljung MC
    J Gen Physiol; 2018 May; 150(5):653-669. PubMed ID: 29685928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Conserved Residue Cluster That Governs Kinetics of ATP-dependent Gating of Kir6.2 Potassium Channels.
    Zhang RS; Wright JD; Pless SA; Nunez JJ; Kim RY; Li JBW; Yang R; Ahern CA; Kurata HT
    J Biol Chem; 2015 Jun; 290(25):15450-15461. PubMed ID: 25934393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of a Pancreatic ATP-Sensitive Potassium Channel.
    Li N; Wu JX; Ding D; Cheng J; Gao N; Chen L
    Cell; 2017 Jan; 168(1-2):101-110.e10. PubMed ID: 28086082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Syntaxin-1A inhibits KATP channels by interacting with specific conserved motifs within sulfonylurea receptor 2A.
    Chao C; Liang T; Kang Y; Lin X; Xie H; Feng ZP; Gaisano HY
    J Mol Cell Cardiol; 2011 Nov; 51(5):790-802. PubMed ID: 21884702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compound heterozygous mutations in the SUR1 (ABCC 8) subunit of pancreatic K(ATP) channels cause neonatal diabetes by perturbing the coupling between Kir6.2 and SUR1 subunits.
    Lin YW; Akrouh A; Hsu Y; Hughes N; Nichols CG; De León DD
    Channels (Austin); 2012; 6(2):133-8. PubMed ID: 22562119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sulfonylurea receptor 2 (SUR2), intricate sensors for intracellular Mg-nucleotides.
    Hou T; Chen L
    Bioessays; 2024 Mar; 46(3):e2300151. PubMed ID: 38227376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfonylurea receptors regulate the channel pore in ATP-sensitive potassium channels via an intersubunit salt bridge.
    Lodwick D; Rainbow RD; Rubaiy HN; Al Johi M; Vuister GW; Norman RI
    Biochem J; 2014 Dec; 464(3):343-54. PubMed ID: 25236767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.